K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(\left(\frac{2}{3}\right)^2+\left(\frac{1}{2}\right)^2.\left(\frac{2}{3}\right)^2\)

\(=\frac{2^2}{3^2}+\frac{1}{3^2}=\frac{2^2+1}{3^2}=\frac{5}{3^2}=\frac{5}{9}\)

\(\Rightarrow\frac{5}{9}\)

20 tháng 3 2022

giúp mình đi

20 tháng 3 2022

các bạn giúp mình đi

11 tháng 3 2022

cái gì

sử dụng công thức MathType đi

11 tháng 3 2022

ko hiểu đâu

27 tháng 2 2017

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

B = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)

\(2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{37.39}\right)\)

\(2.\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\right)\)

\(\frac{2}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)

= \(\frac{4}{13}\)

C = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)

= \(3\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{73.76}\right)\)

= \(3.\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)

= \(\frac{3}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\) 

\(\frac{9}{38}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

7 tháng 4 2020

2 va 1/3 la sao minh khong ro

7 tháng 4 2020

2 và 1 phần 3 là 7 phần 3 đó 

5 tháng 7 2021

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\\ A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}=\dfrac{1023}{1024}\)

DD
17 tháng 6 2021

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2019-2018}{2018.2019}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(=\frac{2017}{2019}\)