Cho a,b,c là các số thực dương có tổng bằng 3. CMR:
(a2b+b2c+c2a)(ab+bc+ca)<=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương Khánh Thực ra là ban đầu mình tính dùng Bunyakovski thẳng luôn nhưng thấy bậc khá cao mà không biết BĐT đó đúng hay sai nên mình đảo a, b, c xuống mẫu để dùng BĐT Bunyakovski thì bậc sẽ thấp hơn.
Và không ngờ sự vô tình đó giúp mình gặp may mắn: Đại lượng abc ở \(\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\) có thể giản ước cho đại lượng abc ở VP. Bậc của BĐT được hạ thấp và mình cứ thế mà chém:))
Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)
Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)
Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)
Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)
\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)
\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)
Bất đẳng thức cuối hiển nhiên.
Đẳng thức xảy ra khi \(a=b=c=1\). Done.
Ta có:
\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+ab^2+b^3+bc^2+c^3+ca^2+a^2b+b^2c+c^2a\)
\(\ge2\sqrt{a^3.ab^2}+2\sqrt{b^3.bc^2}+2\sqrt{c^3.ca^2}+a^2b+b^2c+c^2a=3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
\(P\ge a^2+b^2+c^2+\frac{9}{2\left(a^2+b^2+c^2\right)}-\frac{1}{2}\)
\(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2\left(a^2+b^2+c^2\right)}+\frac{1}{2}\left(a^2+b^2+c^2\right)-\frac{1}{2}\)
\(P\ge2\sqrt{\frac{9\left(a^2+b^2+c^2\right)}{4\left(a^2+b^2+c^2\right)}}+\frac{1}{2}.\frac{1}{3}\left(a+b+c\right)^2-\frac{1}{2}=4\)
\(P_{min}=4\) khi \(a=b=c=1\)
Đề bài thiếu, a;b;c bất kì thì ko thể giải được
Ít nhất a;b;c phải dương
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
Lời giải:
Do $a,b,c\in [0;1]$ nên:
$a^2(1-b)\leq 0$
$b^2(1-c)\leq 0$
$c^2(1-a)\leq 0$
Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$
Ta có đpcm.
Ta có: \(\frac{ab+c}{c+1}=\frac{ab+1-a-b}{c+a+b+c}=\frac{-b\left(1-a\right)+\left(1-a\right)}{\left(a+c\right)+\left(b+c\right)}\)
\(=\frac{\left(1-a\right)\left(1-b\right)}{\left(a+c\right)+\left(b+c\right)}=\frac{\left(b+c\right)\left(a+c\right)}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{4}\left(\frac{\left(b+c\right)\left(a+c\right)}{a+c}+\frac{\left(b+c\right)\left(a+c\right)}{b+c}\right)=\frac{a+b+2c}{4}\)
Tương tự: \(\frac{bc+a}{a+1}=\frac{b+c+2a}{4}\)
\(\frac{ca+b}{b+1}=\frac{c+a+2b}{4}\)
Cộng vế theo vế ta có:
\(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ca+b}{b+1}\le\frac{4a+4b+4c}{4}=a+b+c=1\)
Thiếu:
Dấu "=" xảy ra khi và chỉ khi:
\(\frac{1}{a+b}=\frac{1}{a+c};\frac{1}{a+c}=\frac{1}{b+c};\frac{1}{b+c}=\frac{1}{b+a};a+b+c=1\)
<=> a=b=c=1/3
Lời giải:
Do đây là BĐT hoán vị nên ta hoàn toàn có thể giả sử $b$ nằm giữa $a$ và $c$ rồi dồn về 2 biến $a,c$
Khi đó:
\((b-c)(b-a)\leq 0\)
\(\Leftrightarrow b^2+ac\leq ab+bc\)\(\Rightarrow c(b^2+ac)\leq c(ab+bc)\)
\(\Rightarrow a^2b+b^2c+c^2a\leq a^2b+abc+bc^2=b(a^2+ac+c^2)\)
\(\Rightarrow (a^2b+b^2c+c^2a)(ab+bc+ac)\leq b(a^2+ac+c^2)(ab+bc+ac)\)
Mà:
\(b(a^2+ac+c^2)(ab+bc+ac)=(3-a-c)(a^2+ac+c^2)[(a+c)(3-a-c)+ac]\)
\(=(3-a-c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(=\frac{1}{3}(9-3a-3c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(\leq \frac{1}{3}\left(\frac{9-3a-3c+a^2+ac+c^2+3a+3c-a^2-c^2-ac}{3}\right)^3=\frac{1}{3}.3^3=9\) (theo BĐT AM-GM ngược dấu)
Do đó: \((a^2b+b^2c+c^2a)(ab+bc+ac)\leq 9\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=1$