K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

\(a\left(ax-1\right)=x\left(3a-2\right)-1\)

\(\Leftrightarrow a^2x-a=3ax-2x-1\)

\(\Leftrightarrow a^2x-3ax+2x-a+1=0\)

\(\Leftrightarrow\left(a^2-3a+2\right)x-a+1=0\)

Phương trình có nghiệm duy nhất \(\Leftrightarrow a^2-3a+2\ne0\)

 \(\Delta\ne\left(-3\right)^2-4.1.2\ne1\)

\(\sqrt{\Delta}\ne\sqrt{1}\ne1\)

\(a_1\ne\frac{3+1}{2.1}\ne2\)

\(a_2\ne\frac{3-1}{2.1}\ne1\)

Vậy \(a\ne1\) và \(a\ne2\) thì pt có nghiệm duy nhất 

15 tháng 2 2020

Trl :

        Bạn kia trả lời đúng rồi nhoa :)))

Hok tốt 

~ nhé bạn ~

13 tháng 1 2022

 Trong toán học tham số là số thuộc tập hợp số thực, được coi như là ản trong bài toán. Thường kí hiệu bằng chữ m,n,k...Để giải bài toán chứa tham số là ta đi tìm các trường hợp có thể xảy ra của tham số sau đó giải và biện luận.

♩ Giải pt với a là tham số

a(ax−1)=x(3x−2)−1

⇔a2x−a=3ax−2x−1

⇔a2x−3ax+2x=a−1

⇔x(a2−3a+2)=a−1

⇔x(a2−2a−a+2)=a−1

a: \(\Leftrightarrow a^2x-a-3ax+2x+1=0\)

\(\Leftrightarrow x\left(a^2-3a+2\right)=a-1\)

Để phương trình vô nghiệm thì a-2=0

hay a=2

4 tháng 11 2019

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

a: Khi m=2 thì pt sẽ là \(-x-5=0\)

hay x=-5

b: Để phương trình có nghiệm duy nhất thì m-3<>0

hay m<>3