cho ucln(a,b)=1 cmr
\(ƯCLN\left(a+b,a-b\right)=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt (a, a - b) = d. Ta có:
\(\hept{\begin{cases}a⋮d\\a-b⋮d\end{cases}}\Rightarrow a-\left(a-b\right)⋮d\Rightarrow b⋮d\)
Do đó \(d\inƯC\left(a,b\right)\Rightarrow d=1\)
Vậy...
1.
BĐT cần chứng minh tương đương:
\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)
Ta có:
\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)
\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)
Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)
\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)
Do \(a;b;c\ge1\) nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:
\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)
\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Câu 2 em kiểm tra lại đề có chính xác chưa
2.
Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS
Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)
\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)
BĐT cần chứng minh tương đương:
\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
Đúng theo (1)
Dấu "=" xảy ra khi \(a=b=c\)
(a,b) =1
1) gọi p là một ước nguyên tố của ab, vì p nguyên tố, (a,b) nguyên tố cùng nhau nên p là ước của a (không là ước của b) hoặc ngược lại
=> (a + b) không chia hết cho p (có đúng 1số chia hết cho p, số còn lại ko chia hết nên tổng ko chia hết cho p)
(a+b) và ab ko có ước chung nguyên tố nào => là 2 số nguyên tố cùng nhau tức là UCLN(a+b,ab) = 1
viết j k có hiểu bạn có thể viết lại đề bài đk khôngI love you
\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)
\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)
\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)
Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)
\(\Rightarrow0\le xy\le1\)
\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)
\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)
\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)
Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)