Tìm giá trị nhỏ nhất của biểu thức:
A= \(2x^2+9y^2-6xy-6x-12y+2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+9y^2-6xy-6x-12y+2046\)
\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)
\(A=9y^2-6xy-12y+2x^2-6x+2016\)
\(A=\left(3y\right)^2-2.3y\left(x+2\right)+\left(x+2\right)^2-\left(x^2+4x+4\right)+2x^2-6x+2016\)
\(A=\left(3y-\left(x+2\right)\right)^2+x^2-10x+2012\)
\(A=\left(3y-x-2\right)^2+\left(x-5\right)^2+1987\)
Vậy GTNN của A = 1987 khi x=5 và y=7/3.
\(A=2x^2+9y^2-6xy-6x-12y+2015\)
\(A=\left(x^2-6xy+9y^2\right)+x^2-6x-12y+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)-10x+x^2+2015\)
\(A=\left(x-3y\right)^2+4.\left(x-3y\right)+4+\left(x^2-10x+25\right)+1986\)
\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1986\)
Vì \(\left(x-3y+2\right)^2\ge0;\left(x-5\right)^2\ge0\)
\(\Rightarrow A\ge1986\)
Dấu '=' xảy ra khi:
\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)
Vậy Amin= 1986 khi x = 5, y = 7/3
Chúc bạn học tốt!!!