cho M = 3 + 3^2 + 3^3 + 3^4 + ... +3^100
M có chia hết cho 4 , chia hết cho 12 không
tìm số tự nhiên n biết rằng a.M + 3 = 3^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Số các số có ở M là:
(100-1):1+1=100(số)
Ta có: 100:4=25
ta chia dãy só trên thành 25 nhóm, mỗi nhóm gồm 4 số như sau:
M=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)
= 3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^97(1+3+3^2+3^3)
= 3 x 40 + 3^5 x 40 + ...+ 3^97 x 40
= 40 x ( 3+3^5+...+3^97)
Vì 40 chia hết cho 5 nên 40 x (3+3^5+.....+3^97)
=> M chia hết cho 5
Ta có: 100 : 2 = 50
Ta chia dãy số trên thành 50 nhóm mỗi nhóm gồm 2 số như sau :
M = ( 3 + 3^2 )+( 3^3 + 3^4 )+....+( 3^99 + 3^100 )
= 3(1+3)+3^3(1+3)+...+3^99(1+3)
=3x4+3^3x4+...+3^99x4
= 4 x (3+3^3+...+3^99)
=> M chia hết cho 4
Mà M chia hết cho 3
Từ hai diều trên => M chia hết cho 12
Vậy M chia hết cho 5 và 12.
b)M=3+3^2+3^3+...+3^100
3M = 3 x ( 3+3^2+3^3+...+3^100)
3M=3^2+3^3+3^4+...+3^101
3M - M =(3^2+3^3+3^4+...+3^101)-(3+3^2+3^3+3^4+...+3^100)
2M = 3^101 - 3
=>2M+3 = 3^101 - 3 + 3 = 3^101
=> n = 101
Vậy n=101
Trả lời
M=3+3^2+3^3+...+3^100
=(3+3^2)+(3^3+3^4)+...+(3^99+3^100)
=12+3^2.(3^2+3)+...+3^98(3+3^2)
=12+3^2.12+...+3^98.12
=12.(1+3^2+...+3^98) : 12 (: chia hết nha!)
Do 12=3.4:4=>M: 4
a)\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(M=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)=12\left(1+3^2+...+3^{98}\right)⋮12\)
b)\(M=3+3^2+3^3+3^4+...+3^{100}\)
\(=>3M=3^2+3^3+3^4+3^5+...+3^{101}\)
\(=>3M-M=2M=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(=>2M=3^{101}-3\)
Mà \(2M+3=3^n\)nên \(3^{101}-3+3=3^n=>3^{101}=3^n=>n=101\)
Vậy n = 101
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
\(M=3+3^2+3^3+...+3^{100}\)
\(M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(M=4.\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow M⋮4\)
mà \(M⋮3\)
\(\Rightarrow M⋮12\)
Đáp án M có chia hết cho 4 và M có chia cho 12
a) ta có m = 3 + 32+ 33+...+3100
3M=3^2+3^3+3^4+....+3^101
2M=3^101-3
=>2M+3=3^101
2M+6=3^101+3
M+3=(3^101+3)/2
Tớ nghĩ có lẽ bạn chép sai đề