K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: \(B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{65}{4\cdot69}\)

\(=\dfrac{13}{276}\)

26 tháng 9 2021

\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+...+\dfrac{2}{97\cdot100}\\ A=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\cdot\dfrac{99}{100}=\dfrac{33}{50}\\ B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\\ B=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{69}\right)=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)

\(C=70\left(\dfrac{13}{56}+\dfrac{13}{72}+\dfrac{13}{90}\right)=70\cdot13\left(\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\\ C=910\left(\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{10}\right)=910\cdot\dfrac{3}{70}=39\)

27 tháng 2 2023

B=70.(13.1010156.10101+13.1010172.10101+13.1010190.10101)

B=70.(1356+1372+1390)

B=70.3970=39

nhớ tick cho mình nhe

20 tháng 4 2018

\(C=70.\left(131313.\left(\dfrac{1}{565656}+\dfrac{1}{727272}+\dfrac{1}{909090}\right)\right)\)

\(C=70.\left(131313.\dfrac{1}{235690}\right)\)

\(C=70.\dfrac{39}{70}\)

\(C=39\)

\(\Leftrightarrow\dfrac{2}{3x}-\dfrac{780}{11}:\left[13\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}\right)\right]=-5\)

\(\Leftrightarrow\dfrac{2}{3x}-\dfrac{780}{11}:\left[\dfrac{13}{2}\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\right]=-5\)

\(\Leftrightarrow\dfrac{2}{3x}-\dfrac{780}{11}:\left[\dfrac{13}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\right]=-5\)

\(\Leftrightarrow\dfrac{2}{3x}-\dfrac{780}{11}:\left[\dfrac{13}{2}\cdot\dfrac{8}{33}\right]=-5\)

\(\Leftrightarrow\dfrac{2}{3x}-45=-5\)

=>2/3x=40

=>3x=1/20

hay x=1/60

27 tháng 3 2018

\(\dfrac{2}{3}x-70\dfrac{10}{11}:\left(\dfrac{131313}{151515}+\dfrac{131313}{353535}+\dfrac{131313}{636363}+\dfrac{131313}{999999}\right)=-5\\ \Rightarrow\dfrac{2}{3}x-\dfrac{780}{11}:\left(\dfrac{13}{15}+\dfrac{13}{35}+\dfrac{13}{63}+\dfrac{13}{99}\right)=-5\\ \Rightarrow\dfrac{2}{3}x-\dfrac{780}{11}:13\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}\right)=-5\\ \Rightarrow\dfrac{2}{3}x-\dfrac{780}{11}:13.\dfrac{4}{33}=-5\\ \Rightarrow\dfrac{2}{3}x-\dfrac{780}{11}:\dfrac{52}{33}=-5\\ \Rightarrow\dfrac{2}{3}x-45=-5\\ \Rightarrow\dfrac{2}{3}x=40\\ \Rightarrow x=60\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}-\dfrac{780}{11}:\left[\dfrac{13}{15}+\dfrac{13}{35}+\dfrac{13}{63}+\dfrac{13}{99}\right]=-5\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}-\dfrac{780}{11}:\left[\dfrac{13}{2}\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\right]=-5\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}-\dfrac{780}{11}:\left[\dfrac{13}{2}\left(\dfrac{1}{3}-\dfrac{1}{11}\right)\right]=-5\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}-\dfrac{780}{11}:\dfrac{52}{33}=-5\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=40\)

hay x=40:3/2=80/3

b: \(C=75\left(2-128+128\right)=75\cdot2=150\)

e: \(E=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{69\cdot74}\right)\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{69}-\dfrac{1}{74}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{70}{74}=\dfrac{14}{74}=\dfrac{7}{37}\)

Ta có: \(A=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{5}{14\cdot19}+...+\dfrac{5}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{49-4}{4\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{-623}{89}=-\dfrac{9}{28}\)

30 tháng 1 2022

Đặt \(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{9}{196}.\dfrac{1-3-5-7-...-49}{89}\)

Đặt \(B=1-3-5-7-..-49\)

\(=1-\left(3+5+7+...+49\right)\)

\(=1-\left\{\left(49+3\right).\left[\left(49-3\right):2+1\right]:2\right\}\)

\(=1-624\)

\(=-623\)

\(\Rightarrow\dfrac{9}{196}.\left(\dfrac{-623}{89}\right)=-\dfrac{9}{28}\)

Vậy: \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}=-\dfrac{9}{28}\)

30 tháng 1 2022

Xét \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\)

=\(\dfrac{1}{5}.\dfrac{45}{196}\)

=\(\dfrac{9}{196}\)

Xét \(\dfrac{1-3-5-7-..-49}{89}\)

=\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)

CT tính sl số hạng (số cuối - số đầu ):2+1

số lượng số hạn của dãy 3+5+7+...+49 là (49-3):2+1=24

Áp dụng CT tính tổng số hạng dãy số cách đều Tổng = [ (số đầu + số cuối) x Số lượng số hạng ] : 2

=> tổng = [(3+49).24]:2=624

=>\(\dfrac{1-624}{89}\)

=\(\dfrac{-623}{89}\)

=-7

từ đó ta có \(\dfrac{9}{196}.\left(-7\right)=\dfrac{-9}{28}\)