\(\dfrac{x}{y}=\dfrac{17}{3}vàx+y=-60\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
x=-3.17=-51
y=-3.3=-9
câu tiếp nha:\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
x=19.2=38
y=21.2=42
Chúc bạn học tốt
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\)và x+y=-60
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
=>x=-3.17=-51
y=-3.3=-9
b)\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)và 2x-y=34
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>x=2.19=38
y=2.21=42
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=2\times25=50\)
Vậy\(\left\{{}\begin{matrix}x=10\\y=50\end{matrix}\right.\)
b)
\(\dfrac{x}{5}=\dfrac{y}{7}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{9}\right)^3\Rightarrow\dfrac{x}{5}\times\dfrac{x}{5}=\dfrac{x}{5}\times\dfrac{y}{7}=\dfrac{x\times y}{5\times7}=\dfrac{140}{35}=4=\left(2\right)^2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{7}=2\Rightarrow y=2\times7=14\)
Vậy \(\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)
1) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x}{6}=\dfrac{3y}{15}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).3=-3\\y=\left(-1\right).5=-5\\z=\left(-1\right).7=-7\end{matrix}\right.\)
2) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{28}{19}.8=-\dfrac{224}{19}\\y=-\dfrac{28}{19}.12=-\dfrac{336}{19}\\z=-\dfrac{28}{19}.15=-\dfrac{420}{19}\end{matrix}\right.\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{3\cdot2+5\cdot3-7}=\dfrac{-14}{14}=-1\\ \Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
b, \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{224}{19}\\y=-\dfrac{336}{19}\\z=-\dfrac{420}{19}\end{matrix}\right.\)
Đặt \(\dfrac{x}{-3}=\dfrac{y}{-8}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=8k\end{matrix}\right.\)
Ta có: \(x^2-y^2=-\dfrac{44}{5}\)
\(\Leftrightarrow9k^2-64k^2=-\dfrac{44}{5}\)
\(\Leftrightarrow k^2=\dfrac{4}{25}\)
Trường hợp 1: \(k=\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=\dfrac{6}{5}\\y=8k=\dfrac{16}{5}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{2}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=\dfrac{-6}{5}\\y=8k=\dfrac{-16}{5}\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\) ⇒ \(\dfrac{y}{12}=\dfrac{z}{15}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)\(=\dfrac{x+y-z}{8+12-15}\) \(=\dfrac{10}{5}=2\)
⇒ \(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\) => \(\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{8}{3}}=\dfrac{x-y+z}{3-\dfrac{5}{2}+\dfrac{8}{3}}=\dfrac{95}{\dfrac{19}{6}}=30\\ \Rightarrow\left\{{}\begin{matrix}x=90\\y=30\cdot\dfrac{5}{2}=75\\z=30\cdot\dfrac{8}{3}=80\end{matrix}\right.\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
x+y=16 => x=16-y
thay vào đẳng thức đã cho, ta được:
\(\dfrac{3+16-y}{5+y}=\dfrac{3}{5}\Leftrightarrow\dfrac{19-y}{5+y}=\dfrac{3}{5}\\ \Leftrightarrow\left(19-y\right).5=3.\left(5+y\right)\\ \Leftrightarrow y=10\)
=> x = 6
vậy cặp số x,y cần tìm là 6;10
Theo bài ra ta có: x/3=y/4=z/6 và x-y+2z =121
\(\Rightarrow\)z/6 = 2z/12
\(\Rightarrow\)x/3=y/4=2z/12
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}\)= \(\dfrac{y}{4}\)=\(\dfrac{2z}{12}\)= \(\dfrac{x-y+2z}{3-4+12}\)= \(\dfrac{121}{11}\)=11
+ \(\dfrac{x}{3}\)=11\(\Rightarrow\) x = 11 . 3 = 33
+ \(\dfrac{y}{4}\)=11 \(\Rightarrow\)y = 11.4 = 44
+\(\dfrac{2z}{12}\)=11 \(\Rightarrow\)2z = 11 . 12 =132
\(\Rightarrow\)z = 132 : 2 = 66
Vậy x = 33 ; y = 44 ; z = 66.
sorry mik nhầm ở phần áp dụng :
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\) ( do x + y = -60 )
+) \(\dfrac{x}{17}=-3\Rightarrow x=-3.17=-51\)
+) \(\dfrac{y}{3}=-3\Rightarrow y=-3.3=-9\)
Vậy x = -51 , y = -9
Lời giải:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow \frac{x}{y}+1=\frac{17}{3}+1\)
\(\Rightarrow \frac{x+y}{y}=\frac{20}{3}\)
Thay \(x+y=-60\) ta có: \(\frac{-60}{y}=\frac{20}{3}\Rightarrow y=\frac{-60.3}{20}=-9\)
\(\Rightarrow x=-60-y=-60-(-9)=-51\)
Vậy \((x,y)=(-51, -9)\)