Giải biện luận hpt:
\(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^
bạn à bạn k cho mình trước rồi mình sẽ trả lời cho.Hứa mình học CHUYÊN TOÁN mà,đừng lo nha.Hứa đó
b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)
từ \(\left(2\right)\) ta có: \(y=2m-mx\) \(\left(3\right)\)
thay (3) vào (1) ta được \(x+m\left(2m-mx\right)=m+1\)
\(\Leftrightarrow x+2m^2-m^2x=m+1\)
\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)
\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)
\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\) \(\left(4\right)\)
để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
từ (4) ta có \(x=\frac{m^2-1}{m^2-1}=1\)
từ (3) ta có: \(y=2m-m\)
\(y=m\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)
theo bài ra \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
\(\Leftrightarrow m\ge1\)
vậy....
a) khi m = 2 hpt có dạng
\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)
vậy....
Ơn trời đúng là đề sai rùi thảo nào C-S mãi mà nó cứ ko ra :)
Sửa đề: \(\hept{\begin{cases}x+y^2+z^3=14\\\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)=6\end{cases}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)\ge\left(\frac{1}{\sqrt{2x}}\cdot\sqrt{3x}+\frac{1}{\sqrt{3y}}\cdot\sqrt{2y}+\frac{1}{\sqrt{6z}}\cdot\sqrt{z}\right)^2\)
\(=\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{2}{3}}+\frac{1}{\sqrt{6}}\right)^2=\sqrt{6}^2=6=VP\)
Đẳng thức xảy ra khi \(x=y=z\)
Thay vào pt(1) có:
\(pt\left(1\right)\Leftrightarrow x+x^2+x^3-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)
\(\Leftrightarrow x=2\). Do \(x^2+3x+7=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}>0\)
\(\hept{\begin{cases}x=2\\x=y=z\end{cases}}\Rightarrow x=y=z=2\)
Bài giải của b Thắng chỉ đúng với trường hợp x,y,z không âm thôi vì nếu nó âm thì √x, √y, √z không xác định. Bài toán có cho x,y,z không âm không b.
Cộng hai vế lại với nhau:
Ta có;
mx + 2y+ 3x + (m+1)y =0
=> (m+3)(x+y)=0
Sau đó bạn tự giải tiếp.