K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Are You Crazy

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

24 tháng 8 2015

AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?

24 tháng 8 2015

ố 29 phút trước tui làm gì lên

19 tháng 9 2018

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\frac{1}{98\cdot97}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)

\(\Rightarrow C=\left(\frac{1}{100}+\frac{1}{100}\right)-1\)

\(\Rightarrow C=\frac{1}{50}-1\)

\(\Rightarrow C=\frac{-49}{50}\)

23 tháng 8 2016

=1/100-(1/1x2+1/2x3+...+1/99x100)

=1/100-(1-1/2+1/2-1/3+...+1/99-1/100)

=1/100-(1-1/100)

=1/100-1+1/100

=2/100-1

=-49/50

23 tháng 8 2016

\(\frac{49}{50}\)

15 tháng 8 2021

khó vậy 

15 tháng 8 2021
🤨🤨??????
6 tháng 9 2016

giai giup minh nha

8 tháng 11 2020

Bằng 101 là đúng

4 tháng 8 2016

\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu

\(A=\frac{\frac{101.102}{2}}{50.1+1}\)

\(A=\frac{5151}{51}\)

\(A=101\)

4 tháng 8 2016

Đặt A = 101+100+....+3+2+1

=> Số số hạng của A là: (101-1)+1 = 101 (số)

Tổng A là: (101+1) x 101 :2 = 5151

Đặt B = 101 -100+99 -98+97+...+3-2+1

=> 100 +98+....+1

=> Số số hạng: (100-1)+1 = 100 (số)

Tổng B là: (100 +1) x 100 :2 = 5050

Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)