Cho các số thực dương a,b,c thỏa mãn a+b+c=3 . Chứng minh rằng
\(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh
\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)
\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)
\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)
Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:
\(a\left(a-c\right)\left(b-c\right)\le0\)
Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:
\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)
Áp dụng Bất Đẳng Thức AM-GM ta có:
\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh
Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )
Bài hay quá!
Đặt \(a=\frac{3x}{x+y+z};b=\frac{3y}{x+y+z};c=\frac{3z}{x+y+z}\left(x;y;z>0\right)\)
Sau khi quy đồng cần chứng minh:
\(2\, \left( x+y+z \right) \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)(gõ Latex, không biết ad đã fix lỗi chưa, nếu nó không hiện thì hỏi ad, đừng hỏi em!)
Hay là: \( \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)
Or:
\(9\, \left( 1/4\, \left( x-2\,z+y \right) ^{2}+3/4\, \left( -y+x \right) ^{2} \right) {z}^{3}+3\, \left( x-2\,z+y \right) ^{3}{z}^{2}+ \left( \left( 3/4\, \left( x-2\,z+y \right) ^{2}+1/4\, \left( -y+x \right) ^{2} \right) \left( -y+x \right) ^{2}+ \left( x-z \right) ^{ 4}+ \left( y-z \right) ^{4} \right) z+ \left( x-z \right) \left( y-z \right) \left( \left( x-z \right) ^{3}+3\, \left( x-z \right) ^{2} \left( y-z \right) +3\, \left( x-z \right) \left( y-z \right) ^{2}+ 21\, \left( x-z \right) \left( y-z \right) z+ \left( y-z \right) ^{3} \right) \geq 0 \)
Cách xử trí: Nếu nó không hiện: Sau khi quy đồng, ta biến đối nó về như trong link sau: https://imgur.com/D8ScX4k
Cách khác:
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^2+b^2+c^2+3\)
Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+3\)
Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(ab+bc+ca\right)\ge12\)
Or: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\ge6\)
Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)(*)
Do đó: \(VT=\frac{ab+bc+ca}{abc}+ab+bc+ca\)
\(\ge\frac{a+b+c\left(a+b\right)-1}{\frac{c\left(a+b\right)^2}{4}}+a+b+c\left(a+b\right)-1\)
\(=\frac{4\left(c+1\right)\left(a+b\right)-4}{c\left(a+b\right)^2}+\left(c+1\right)\left(a+b\right)-1\)
\(=\frac{4\left(c+1\right)\left(3-c\right)-4}{c\left(3-c\right)^2}+\left(c+1\right)\left(3-c\right)-1\ge6\)
Last inequality\(\Leftrightarrow\frac{\left(2-c\right)^3\left(c-1\right)^2}{c\left(c-3\right)^2}\ge0\). Nếu c < 2 thì ta có đpcm.
Nếu \(c\ge2\)
\(VT=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\)
\(>\frac{4}{a+b}+ab+c\left(a+b\right)\ge\frac{4}{a+b}+2\left(a+b\right)\ge2\sqrt{8}>3\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)
\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)
\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}+\frac{2\left(a+b+c\right)^2}{9}\)
\(\ge\frac{\left(\frac{9}{a+b+c}\right)^2}{3}+\frac{2\left(a+b+c\right)^2}{9}=\frac{3^2}{3}+\frac{2.9}{9}=5\)
Lời giải
Bất đẳng thức cần chứng minh được viết lại thành
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$
Ta chứng minh bất đẳng thức sau đây
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
Thật vậy, bất đẳng thức trên tương đương với
$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$
Hiển nhiên đúng với a là số thực dương.
Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$
Cộng theo vế các bất đẳng thức trên ta được
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.
Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.
Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$
Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.
Để ý là với cách làm trên ta chưa sử dụng điều kiện .
Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$
Trong đó m và n là các hệ số chưa xác định.
Thiết lập tương tự với các biến b và c ta được
$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$
Cộng theo vế các bất đẳng thức trên ta có
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$
Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$
Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho
$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$
Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ
$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$
Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)
Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))
Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\); \(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)
Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)
Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)
Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)
Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)
Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)
\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng vế với vế 3 BĐT trên ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
bnhia dưới mẫu ta được:
\(...\le\frac{a\left(a+ac+a\right)}{9a}+\frac{b\left(b+ab+1\right)}{9b}+\frac{c\left(c+bc+1\right)}{9c}\le\frac{6+\frac{\left(a+b+c\right)^2}{3}}{9}=1\)
"=' <=> a=b=c=1
Chắc ý bạn ấy là thế này:
\(\frac{a}{a^3+b^2+c}=\frac{a\left(\frac{1}{a}+1+c\right)}{\left(a^3+b^2+c\right)\left(\frac{1}{a}+1+c\right)}\le\frac{1+a+ac}{\left(a+b+c\right)^2}\)
Thiết lập các BĐT tương tự rồi cộng lại:
\(LHS\le\frac{3+a+b+c+ab+bc+ca}{\left(a+b+c\right)^2}\le\frac{6+\frac{\left(a+b+c\right)^2}{3}}{\left(a+b+c\right)^2}=1\)
Vậy ta có đpcm
Đẳng thức xảy ra tại a=b=c=1