K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

Đây bạn :V

Ta có: \(\sqrt{2018^2+2019^2+2018^2+2019^2}\)

\(=2018+2019+2018+2019\)

\(=2.2018+2.2019\)

\(=2.\left(2018+2019\right)\)

\(=2.4073\)

\(=8047\)

Chúc bạn học tốt:))

28 tháng 12 2018

Đặt \(2018=a\)

\(\Rightarrow\sqrt{2018^2+2019^2+2018^2.2019^2}=\sqrt{a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2}\)

\(=\sqrt{a^4+2a^3+3a^2+2a+1}=\sqrt{\left(a^2+a+1\right)^2}\)

\(=a^2+a+1=2018^2+2018+1\)

15 tháng 10 2018

\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)

\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)

\(\Rightarrow2018A-A=2018^{2020}-2018\)

\(\Rightarrow2017A=2018^{2020}-2018\)

\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)

\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)

\(\Rightarrow M=2018^{2020}-2018+1\)

\(\Rightarrow M=2018^{2020}-2017\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

NV
20 tháng 9 2020

\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)

Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)