giai phuong trinh \(\left(x^2-9\right)\left(9x^2-1\right)=20x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}\left(x^2+1\right)^2+3\left(x^2+x\right)-9=0\)
<=> \(3\left(x^2+1\right)^2.4+3\left(x^2+x\right).4-9.4=0.4\)
<=> \(3\left(x^2+1\right)^2+12\left(x^2+x\right)-36=0\)
<=> \(3x^4+18x^2+12x-33=0\)
<=> \(3\left(x-1\right)\left(x^3+x^2+7x+11\right)=0\)
<=> \(x-1=0\)
<=> \(x=1\)
Mà vì: \(x^3+x^2+7x+11\ne0\)
=> x = 1
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
VT>=0 suy ra 4x>=0
suy ra x>=0
..................................................................................................
Do : VP ≥ 0
=> VT ≥ 0
=> 4x ≥ 0
=> x ≥ 0
nên Phương trình trên có dạng :
x + 2 + x + 9 + x + 2011 = 4x
<=> 3x + 2022 = 4x
<=> x = 2022 ( thỏa mãn )
KL....
a/ Thay m=-1 vào phương trình (1) ta được:
\(x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)
b/ Xét phương trình (1) có
\(\Delta=\left(m+2\right)^2-4.2m\)
= \(m^2-4m+4=\left(m-2\right)^2\)
Ta có: \(\left(m-2\right)^2\ge0\) với mọi m
\(\Leftrightarrow\Delta\ge0\) với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)
Theo đề bài ta có:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)
vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
Nhận thấy \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\) là nghiệm của pt
- Với \(x>-2\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>0\\\left|x+3\right|>1\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)
\(\Rightarrow\) pt vô nghiệm
- Với \(x< -3\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>1\\\left|x+3\right|>0\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)
\(\Rightarrow\) pt vô nghiệm
- Với \(-3< x< -2\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|< 1\\\left|x+2\right|< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|^{2010}< \left|x+2\right|\\\left|x+3\right|^{2011}< \left|x+3\right|\end{matrix}\right.\) \(\Rightarrow VT< \left|x+2\right|+\left|x+3\right|=-x-2+x+3=1\)
\(\Rightarrow\) pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
\(\left(2-x\right)\left(2x-1\right)+\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(2x-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2-x+2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-1\end{array}\right.\)
Vậy phương trình có tập nghiệm \(\left\{-1;\frac{1}{2}\right\}\)
(2-x)(2x-1)+(4x^2-4x+1)=0
Ta có: (2x-1)(2-x)+(2x-1)^2=0
(2x-1)(2-x+2x-1)=0
Sau đó bn tự lam nha tại vì mk làm bằng phone
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)