C = 1 + a + a2 + a3+...+a2011chia hết cho a + 1 [ a thuộc N ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(a+a^2\right)+\left(a^3+a^4\right)+\left(a^5+a^6\right)+...+\left(a^{29}+a^{30}\right)=\)
\(=a\left(a+1\right)+a^3\left(a+1\right)+a^5\left(a+1\right)+...+a^{29}\left(a+1\right)=\)
\(=\left(a+1\right)\left(a+a^3+a^5+...+a^{29}\right)⋮\left(a+1\right)\)
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
Đáp án D
Số phần tử của tập
Để chia hết cho 5 điều kiện cần và đủ là hay
Nếu thì lấy trong 7 chữ số 1,2,...,7
Vậy có số tận cùng bằng 0
Nếu thì các số là số
Vây xác suất để số đó chia hết cho 5 là