K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Gọi hai số tự nhiên cần tìm là a và b

Ta có : a=6.k1;b=6.k2a=6.k1;b=6.k2

Trong đó : ƯCLN(k1,k2)=1ƯCLN(k1,k2)=1

Mà : a+b=84⇒6.k1+6.k2=84a+b=84⇒6.k1+6.k2=84

⇒6(k1+k2)=84⇒k1+k2=84÷6=14⇒6(k1+k2)=84⇒k1+k2=84÷6=14

+) Nếu : k1=1⇒k2=13⇒{a=6b=78k1=1⇒k2=13⇒{a=6b=78

+)Nếu : k1=3⇒k2=11⇒{a=18b=66k1=3⇒k2=11⇒{a=18b=66

+)Nếu : k1=5⇒k2=9⇒{a=30b=54k1=5⇒k2=9⇒{a=30b=54

Vậy ...

b, Tương tự câu a,

c, Gọi hai số tự nhiên cần tìm là a và b

Vì : ƯCLN(a,b)=10;BCNN(a,b)=900ƯCLN(a,b)=10;BCNN(a,b)=900

⇒ƯCLN(a,b).BCNN(a,b)=a.b=900.10=9000⇒ƯCLN(a,b).BCNN(a,b)=a.b=900.10=9000

Phần còn lại giống câu a và câu b bạn tự làm nha

chúc bạn hok tốt

13 tháng 12 2016

a, Gọi hai số tự nhiên cần tìm là a và b

Ta có : \(a=6.k_1;b=6.k_2\)

Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)

Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)

\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)

+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)

+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)

+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)

Vậy ...

b, Tương tự câu a,

c, Gọi hai số tự nhiên cần tìm là a và b

Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)

\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)

Phần còn lại giống câu a và câu b tự làm

30 tháng 12 2014

a) n=7k+1 (  \(k\in N\))

b) 18 va 66 hoac 6 va 78 hoac 30 va 54

c) 15 va 20 hoac 5 va 60

d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90

18 tháng 12 2019

a, Gọi hai số phải tìm là a,b. Ta có (a;b) = 6 => a = 6a’, b = 6b’ với (a’,b’) = 1(a,b,a’,b’ ∈ N)

Do đó: a+b = 84 => 6.(a’+b’) = 84 => a’+b’ = 14

Chọn cặp số a’,b’ là hai số nguyên tố cùng nhau có tổng bằng 14 ta được:


Do đó:

b, Gọi hai số phải tìm là a.b. Ta có (a;b) = 5 => a = 5a’, b = 5b’ với (a’,b’) = 1 (a,b,a’,b’N)

Do ab = 300 => 25a’b’ = 300 => a’b’ = 12 = 4.3

Chọn cặp số a’,b’ nguyên tố cùng nhau có tích bằng 12 ta được:

a’ = 1, b’ = 12 => a = 5, b = 60

a’ = 3, b’ = 4 => a = 15, b = 20

c, Gọi hai số phải tìm là a,b. Ta có (a;b) = 10 => a = 10a’; b = 10b’ với (a’,b’) = 1 (a,b,a’,b’N, a’<b’). Do đó: ab = 100a’b’ (1)

Mặt khác: ab = [a,b].(a,b) = 900.10 = 9000 (2)

a’ = 1, b’ = 90 => a = 10, b = 900

a’ = 2, b’ = 45 => a = 20, b = 450

a’ = 5, b’ = 18 => a = 50, b = 180

a’ = 9, b’ = 10 => a = 90, b = 100

31 tháng 1 2022

UKM

^6^7g^7*(KHV C GTGFCCGttedx

8 tháng 12 2015

a) goi hai so la a ; b va a >b

vi UCLN(a,b)=18=>a=18k            ;       b=18q       (trong do UCLN (k,q)=1 va k>q)

=>a+b=162

18k+18q =162

18(k+q)=162

k+q=9

ta co bang sau   

 

k1234
q8765
a18365472
b14412610890

vay ...........

   
    
    

 

29 tháng 10 2016

21453 

52542000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

542454550212.100000000000000000000000000000000000000000000000000000000000000000000000000000