Tìm số tự nhiên lớn nhất có 2 chữ số mà số đó chia hết cho tích các chữ số của nó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab¯¯¯¯ (a,b≠0 ; a,b∈N ; a,b<10).
Ta có :
ab¯¯¯¯ ⋮ ab
⇔10a+b ⋮ a
⇔b ⋮ a
Đặt b=aq với q∈N , 0<q≤9.
⇔a(10+q) ⋮ ab
⇔10+q ⋮ b
⇔10+q ⋮ q (b ⋮ q)
⇔10 ⋮ q
⇔q∈{1;2;5}
Thử từng trường hợp là ra.
Gọi số cần tìm là ab. (a,b là các chữ số ; a khác 0).
ab chia hết cho a x b
<=> 10a + b chia hết cho a x b
... (chưa gặp dạng này bao giờ)
Gọi số cần tìm là ab, ta có 10a +b = k.a.b
Điều kiện : a,b nhận giá trị từ 0 đến 9 và k là số nguyên dương
=> b= 10.a / (k.a -1)
=>b =10/(k-1/a)
Do điều kiện đã đặt nên (k - 1/a )phải có giá trị 5/3 hoặc 2 hoặc 2,5 hoặc 5 hoặc 10 (vì số 10 chỉ chia cho các số nay là có số nguyên, dương và <=9)
* Nếu k-1/a = 2 => a(k-2) = 1,
* Nếu k-1/a = 5 => a(k-5) = 1,
* Nếu k-1/a = 10 => a(k-10) = 1,với 3 trường hợp nêu trên thì dễ thấy a=1; => b=10/(k-1), theo điều kiện thì b= 1 hoặc 2 hoặc 5.Vậy số đó là các số : 11; 12 hoặc 15
* Nếu k-1/a = 2,5 =>a=1/(k-2,5) => a nhận giá trị là 2=> b= 10/(k-1/2) = 20/(2k-1) thì b chỉ nhận giá trị là 4. Vậy các số đó là 24
*Nếu k-1/a = 5/3 =>a.(3k-5)=3 => a= 3(vì tích 2 số nguyên = 3 thì chỉ có số 1 và số 3) => b=6
Vậy số đó là số 36.
Kết luận : các số đó là 11; 12; 15; 24 và 36.
Số 1111...11 (có vô số chữ số 1), chia hết cho tích các chữ số của nó là 1, đó cũng là số lớn nhất.