Cho hàm số y=(m+5)x+2m-10. Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(2m+2=0\Rightarrow m=-1\Rightarrow y=-2\)
=> ĐTHS là đường thẳng đi qua (0;-2) và // với trục Ox
=> Khoảng cách từ O đến đths là 2
Nếu \(2m+2\ne0\Rightarrow m\ne-1\)
Khi đó ĐTHS \(y=\left(2m+2\right)x+m-1\) là đường thẳng đi qua điểm \(A\left(\frac{1-m}{2m+2};0\right)\) và \(B\left(0;m-1\right)\)
(ĐTHS bạn tự vẽ nhé)
Kẻ OH vuông góc với AB => OH là khoảng cách từ O đến đths
Tam giác AOB vuông tại O có OH là đường cao ứng với cạnh huyền nên ta có hệ thức sau:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(\frac{1-m}{2m+2}\right)^2}+\frac{1}{\left(m-1\right)^2}=\frac{4m^2+8m+5}{m^2-2m+1}\)
\(\Rightarrow OH^2=\frac{m^2-2m+1}{4m^2+8m+5}\)
Đặt \(OH^2=a\ge0\)
\(\Rightarrow4m^2a+8ma+5a=m^2-2m+1\)
\(\Leftrightarrow m^2\left(4a-1\right)+2m\left(4a+1\right)+\left(5a-1\right)=0\)
\(\Delta^'=\left(4a+1\right)^2-\left(4a-1\right)\left(5a-1\right)=16a^2+8a+1-20a^2+9a-1\)
\(=-4a^2+17a=-a\left(4a-17\right)\)
\(\Delta^'\ge0\Leftrightarrow a\left(4a-17\right)\le0\Rightarrow0\le a\le\frac{17}{4}\)
\(\Rightarrow a_{max}=\frac{17}{4}\Rightarrow OH^2=\frac{17}{4}\Rightarrow OH=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi: \(\frac{m^2-2m+1}{4m^2+8m+5}=\frac{17}{4}\Leftrightarrow4m^2-8m+4=68m^2+136m+85\)
\(\Leftrightarrow64m^2+144m+81=0\Leftrightarrow\left(8m+9\right)^2=0\Rightarrow m=-\frac{9}{8}\)
Vậy khoảng cách lớn nhất từ O đến đths là \(\frac{\sqrt{17}}{2}\) khi \(m=-\frac{9}{8}\)
a) Để hàm số trên đồng biến thì a>0 <=> m+5>0 <=> m>-5
b) thay A(2;3) vào đồ thị hs ta đc 3=(m+5).2+2m-10 =>m=3/4
PT giao Ox: \(y=0\Leftrightarrow\left(m-1\right)x=-3m\Leftrightarrow x=\dfrac{3m}{1-m}\Leftrightarrow A\left(\dfrac{3m}{1-m};0\right)\Leftrightarrow OA=\left|\dfrac{3m}{1-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=3m\Leftrightarrow B\left(0;3m\right)\Leftrightarrow OB=\left|3m\right|\)
Gọi H là hình chiếu O lên đths
K/c từ O đến đths đạt max khi OH đạt max
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{\left(1-m\right)^2}{9m^2}+\dfrac{1}{9m^2}=\dfrac{m^2-2m+2}{9m^2}\)
Đặt \(\dfrac{1}{OH^2}=t\Leftrightarrow9m^2t=m^2-2m+2\)
\(\Leftrightarrow m^2\left(9t-1\right)+2m-2=0\)
Coi đây là PT bậc 2 ẩn m, PT có nghiệm khi:
\(\Delta=4-4\left(-2\right)\left(9t-1\right)\ge0\\ \Leftrightarrow4+72t-9\ge0\\ \Leftrightarrow t\ge\dfrac{5}{72}\Leftrightarrow\dfrac{1}{OH^2}\ge\dfrac{5}{72}\\ \Leftrightarrow OH^2\le\dfrac{72}{5}\Leftrightarrow OH\le\dfrac{6\sqrt{10}}{5}\)
Dấu \("="\Leftrightarrow\) PT có nghiệm kép
\(\Leftrightarrow m=-\dfrac{b}{2a}=-\dfrac{2}{18t-2}=-\dfrac{2}{18\cdot\dfrac{5}{72}-2}=\dfrac{8}{3}\)
cho em hỏi cái đoạn coi đây là PT bâc 2 ẩn m , cái hình tam giác là gì vậy ạ với lại 4 -4(-2) là ở đâu vậy ạ
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Đặt: d: y = ( m+1 ) x + 3
+) TH1: m = -1
=> d: y = 3
=> Khoảng cách của gốc tọa độ tới d là: 3 (1)
+) Th2: m khác -1.
Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))
=> \(OA=\left|\frac{3}{m+1}\right|\)
Giao điểm của d với Oy là: \(B\left(0;3\right)\)
=> OB = 3.
Kẻ OH vuông với d tại H => AH là khoảng cách từ O tới d
Xét tam giác OAB vuông tại O. Có OH là đường cao:
=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)
=> \(OH< 3\)
=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)
Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.
\(d\left(O;d\right)=\dfrac{\left|\left(m+5\right)^2\cdot0+\left(-1\right)\cdot0+2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}=\dfrac{2\left|m-5\right|}{\sqrt{\left(m+5\right)^2+1}}\)
Để (d) lớn nhất thì m+5=0
=>m=-5