K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

ta có: Q= 10/10-5=2 

vậy x= 10

23 tháng 12 2018

ĐK: \(x\ne5\)

Nếu \(x-5>0\Rightarrow x>5\)

Khi đó: \(Q>1\Rightarrow\frac{x}{x-5}>1\Rightarrow x>x-5\) (luôn đúng)

Nếu \(x-5< 0\Rightarrow x< 5\)

Khi đó: \(\frac{x}{x-5}>1\Rightarrow x< x-5\) (vô lý)

Vậy x > 5

6 tháng 7 2016

điều kiện \(x\ge0\)và x khác 1/4

Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)

=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)

đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)

<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0

vậy Q>1/2 khi x>=0 và x khác 1/4

6 tháng 7 2016

cảm ơn nhiều

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

12 tháng 10 2021

a, Với x >= 0 ; x khác 4 

\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)

b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)

\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)

c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\sqrt{x}-2\)-11-22-44-88
x19016loại36loại100
11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4

Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

b) Với x \(\ge\)0 và x \(\ne\)4, ta có:

P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)

<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)

<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)

<=> \(\frac{-8}{\sqrt{x}-2}>0\)

Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)

mà x \(\ge0\) => 0 \(\le\)\(< \)4

c)Với x \(\ge\)0 và x \(\ne\)4

Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)

<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)

Lập bảng: 

\(\sqrt{x}-2\)      -2 -1 1 2 4 8
   x    0  1 9 16 36 100

Vậy ....

9 tháng 6 2017

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

11 tháng 2 2020

\(1,ĐKXĐ:x\ge0;x\ne4\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-2+\sqrt{x}+2-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{2}{\sqrt{x}+2}\right)\)

\(A=\frac{2}{\sqrt{x}}\)

\(2,A>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{4}{2\sqrt{x}}-\frac{\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{2\sqrt{x}}>0\)

Do \(\sqrt{x}>0\Rightarrow2\sqrt{x}>0\)

\(\Rightarrow4-\sqrt{x}>0\)

\(\Leftrightarrow-\sqrt{x}>-4\)

\(\Leftrightarrow\sqrt{x}< 4\)

\(\Leftrightarrow x< 16\)

Kết hợp với ĐKXĐ thì \(0\le x< 16\)và \(x\ne4\)

\(3,A=-2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}=-2\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}\left(-2\sqrt{x}+5\right)=2\)

\(\Leftrightarrow-2x+5\sqrt{x}-2=0\)

\(\Leftrightarrow-2x+2.5\sqrt{x}+2.5\sqrt{x}-2=0\)

\(\Leftrightarrow\left(-2x+2.5\sqrt{x}\right)+\left(2.5\sqrt{x}-2\right)=0\)

Đến đây thì mình chịu

Bạn tự giải nốt nhé

HỌC TỐT

25 tháng 10 2020

\(B=\frac{x+5}{x+8}>1\)

ĐKXĐ : x khác -8

\(\Leftrightarrow\frac{x+5}{x+8}-1>0\)

\(\Leftrightarrow\frac{x+5}{x+8}-\frac{x+8}{x+8}>0\)

\(\Leftrightarrow\frac{x+5-x-8}{x+8}>0\)

\(\Leftrightarrow\frac{-3}{x+8}>0\)

Vì -3 < 0

\(\Rightarrow x+8< 0\)

\(\Rightarrow x< -8\)