K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7

Lời giải:

$(x-3)^2\geq 0$ với mọi $x$

$(y-7)^4\geq 0$ với mọi $y$

$\Rightarrow A=(x-3)^2+(y-7)^4-7\geq 0+0-7=-7$

Vậy $A_{\min}=-7$. Giá trị này đạt tại $x-3=y-7=0$

$\Leftrightarrow x=3; y=7$

25 tháng 2 2015

Đây là toán 6 mà.

Amin=-7

26 tháng 4 2017

Vì \(\left(x-3\right)^2\ge0;\left(y-7\right)^4\ge0\Rightarrow\)

\(MaxA=-7\Leftrightarrow x=3;y=7\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8