Cho p>q là 2 số nguyên tố lẻ liên tiếp. Chứng minh rằng (p+q)2 là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không mất tổng quát ta giả sử p<q
vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)
do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)
do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số
Giả sử (p1+p2):2 là số nguyên tố, Khi đó ta có p1+p2=2d với d nguyên tố
Vì p1, p2 là hai số nguyên tố liên tiếp, và p1 > p2 nên từ p1+p2=2d ⇒ p1 > d > p2 như vậy giữa p1, p2 còn số d là số nguyên tố (mâu thuẫn với giả thuyết) ⇒ (p1+p2);2 là hợp số.
Hoặc:
p2+1 là chẵn
=> (p1+p2)/2 là chẵn
=> Nếu nó là SNT thì p2+1 phải là số tự nhiên.
Mà nó lại là số chẵn
=> p2+1 = 2
=> p2=1 (k phải snt)
Vậy (p1+p2)/2 là hợp số
ta có :
số chia hết cho 2 phải là số chẵn
số nào chia cho 2 cũng có thương là số chẵn ( khác 2 )
=> (P1 + P2 ) : 2 = SỐ CHĂN CHIA HẾT 2 => SỐ ĐÓ CÓ TRÊN 2 ƯỚC
=> ĐPCM
Do p; q là 2 số nguyên tố lẻ liên tiếp nên giả sử p = 2.k + 1; q = 2.k + 3 (k ϵ N)
Ta có: p + q = 2m
=> 2.k + 1 + 2.k + 3 = 2m
=> 4.k + 4 = 2m
=> 2.k + 2 = m
=> 2.(k + 1) = m
\(\Rightarrow m⋮2\)
Mà 1 < 2 < m => m là hợp số (đpcm)