Cho n là số không chia hết Cho 3. Chứng minh rằng n bình phương chia 3 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k∈N*)
Nếu n = 3k+1 thì \(n^2=\left(3k+1\right)\left(3k+1\right)=3k\left(3k+1\right)\). Suy ra \(n^2\)chia cho 3 dư 1
Nếu n = 3k+2 thì \(n^2=\left(3k+2\right)\left(3k+2\right)=3k\left(3k+2\right)+6k+4\). Suy ra \(n^2\)chia 3 dư 1
Vì n không chia hết cho 3 nên n có thể được viết dưới dạng n = 3k+1 hoặc n = 3k+2 (k ∈ N*)
Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) = 3k(3k+1)+3k+1. Suy ra n 2 chia cho 3 dư 1.
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) = 3k(3k+2)+6k+4.Suy ra n 2 chia cho 3 dư 1.
=> ĐPCM
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
n không chia hết cho 3 nên n có 2 dạng:3k+1,3k+2
Với n=3k+1\(\Rightarrow\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=9k^2+3k+3k+1\)chia 3 dư 1
Với n=3k+2\(\Rightarrow\left(3k+2\right)^2=\left(3k+2\right)\left(3k+2\right)=9k^2+6k+6k+4=9k^2+6k+6k+3+1\)chia 3 dư 1
Suy ra điều cần chứng minh!