K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2022

Trong tử số, có số số 1 là:

(100 - 1) + 1 = 100(số)

Trong tử số, có số số 2 là:

(100 - 2) + 1 = 99(số)

Trong tử số, có số số 3 là:

(100 - 3) + 1 = 98(số)

.........................................................................

Trong tử số, có số số 100 là:

(100 - 100) + 1 = 1(số)

Vậy, ta có:

1+(1+2)+(1+2+3)+...+(1+2+3+4+...+100)100.1+99.2+98.3+...+3.98+2.99+1.1001+(1+2)+(1+2+3)+...+(1+2+3+4+...+100)100.1+99.2+98.3+...+3.98+2.99+1.100

=100.1+99.2+98.3+...+3.98+2.99+1.100100.1+99.2+98.3+...+3.98+2.99+1.100=100.1+99.2+98.3+...+3.98+2.99+1.100100.1+99.2+98.3+...+3.98+2.99+1.100

=1

21 tháng 10 2018

\(S_n=1.1!+2.2!+3.3!+...+n.n!\)

\(\text{Ta có:}\) \(1.1!=2!-1!\)

\(2.2!=3!-2!\)

\(3.3!=4!-3!\)

.......

\(n.n!=\left(n+1\right)!-n!\)

Cộng vế với vế ta đc: 

\(S_n=1.1!+2.2!+3.3!+...+n.n!=2!-1!+3!-2!+4!-3!+...+\left(n+1\right)!-n!\)

\(=\left(n+1\right)!-1!=\left(n+1\right)!-1\)

21 tháng 10 2018

thank bn

7 tháng 8 2016

Tử số  \(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)

\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+...+\left(\frac{1}{50}+\frac{1}{51}\right)\)

\(=\frac{101}{1.100}+\frac{101}{2.99}+...+\frac{101}{50.51}\)

\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)

Mẫu số \(=\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{99.2}+\frac{1}{100.1}\)

\(=2.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)

=> phân số đề bài cho \(=\frac{101}{2}\)

7 tháng 8 2016

= 99 nha ban

15 tháng 5 2017

cần gấp ko bn 

15 tháng 5 2017

có bạn. mai mk faj nộp r