Cho tam giác ABC. Xđinh P sao cho: \(5\overrightarrow{PA}-2\overrightarrow{PB}-\overrightarrow{PC}=\overrightarrow{0}\)
Khi đó cminh: \(\overrightarrow{OP}=\dfrac{5}{2}\overrightarrow{OA}-\overrightarrow{OB}-\dfrac{1}{2}\overrightarrow{OC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\vec{AN}=\vec{AM}+\vec{MN}\)
\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\vec{MB}\)
\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\left(\vec{AB}-\vec{AM}\right)\)
\(=\dfrac{1}{4}\vec{AB}+\dfrac{1}{2}\vec{AC}\)
\(\vec{AP}=\vec{AC}+\vec{CP}\)
\(=\vec{AC}+\dfrac{1}{k+1}\vec{CB}\)
\(=\vec{AC}+\dfrac{1}{k+1}\left(\vec{AB}-\vec{AC}\right)\)
\(=\dfrac{1}{k+1}\vec{AB}+\dfrac{k}{k+1}\vec{AC}\)
A, N, P thẳng hàng khi:
\(\dfrac{\dfrac{k}{k+1}}{\dfrac{1}{k+1}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{4}}\Leftrightarrow k=2\)
Kết luận: \(k=2\)
a: \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\overrightarrow{AC}\)
b: \(=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
\(=\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}\)
c: \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)