Cho S= 1+31+32+ 33+...+32016+32017+32018.
Chứng minh S chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)
\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(=13+3^3\cdot13+...+3^{2016}\cdot13\)
\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
S = 2 + 22 + ... + 2150
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 2146 + 2147 + 2148 + 2149 + 2150 )
= 2.(1+2+22+23+24) + 26.(1+2+22+23+24) + ... + 2146(1+2+22+23+24)
= 2.31 + 26.31 + ... + 2146.31
= 31.(2+26+...+2146) chia hết cho 31
\(M=32^{2023}-32^{2021}=32^{2021}\left(32^2-1\right)=32^{2021}.1023=32^{2021}.31.33\)
Vì \(31⋮31=>M⋮31\)
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Đặt A = 6x + 3y ; B = x + 7y
Xét hiệu 6B - A = 6 . ( x + 7 y ) - ( 6x + 3y )
= 6x + 42y - 6x - 3y
= 39y
Chị thấy đến đây chị ko làm đc nữa. Em có chép nhầm đề bài ko vậy .
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
Ahihi
Nhón ba số đầu với nhau cứ thế cho đến hết
(1+3+3^2)+...+(3^2016+3^2017+3^2018)
=13+...+3^2016(1+3+3^2)
=13+...+3^2016x13
=13(1+...+3^2016)
vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13
Chuẩn không nhớ
\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)
\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{2016}.13\)
\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)
Hok tốt