K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AE = EB = \frac{1}{2}AB\) (do \(E\) là trung điểm của \(AB\))

\(DF = FC = \frac{1}{2}CD\) (\(F\) là trung điểm của \(CD\))

\(AB = CD\) (do \(ABCD\) là hình bình hành)

Suy ra \(AE = CF = EB = DF\)

Xét tứ giác \(AECF\) ta có:

\(AE\) // \(CF\) (do \(AB\) // \(CD\))

\(AE = CF\)

Suy ra \(AECF\) là hình bình hành

b) Vì \(AB = 2AD\) (gt) và \(AB = 2AE\)  (do \(E\) là trung điểm của \(AB\))

Suy ra \(AD = AE\)

Xét tứ giác \(AEFD\) có \(AE\) // \(DF\) và \(AE = DF\) (cmt)

Suy ra \(AEFD\) là hình bình hành

Mà \(AE = AD\) (cmt)

Suy ra \(AEFD\) là hình thoi

c) Ta có \(AF \bot DE\) (do \(AEFD\) là hình thoi)

và \(AF\) // \(EC\) (\(AECF\) là hình bình hành)

Suy ra \(EC \bot DE\)

Suy ra \(\widehat {IEK} = 90^\circ \)

Vì \(AEFD\) là hình thoi nên \(EF = AE\)

Và \(AE = \frac{1}{2}AB\) (gt)

Suy ra \(EF = \frac{1}{2}AB\)

Xét \(\Delta AFB\) có \(FE\) là đường trung tuyến và \(EF = \frac{1}{2}AB\)

Suy ra \(\Delta AFB\) vuông tại \(F\)

Suy ra \(\widehat {{\rm{IFK}}} = 90\)

Xét tứ giác \(EIFK\) ta có:

\(\widehat {{\rm{EIF}}} = 90\) (do \(AF \bot DE\))

\(\widehat {{\rm{IEK}}} = 90^\circ \) (cmt)

\(\widehat {{\rm{IFK}}} = 90^\circ \) (cmt)

Suy ra \(EIFK\) là hình chữ nhật

d) \(EIFK\) là hình vuông

Suy ra \(FI = EI\)

Mà \(EI = ID = \frac{1}{2}DE\) ( do \(AEFD\) là hình thoi)

\(FI = IA = \frac{1}{2}AF\)  (do \(AEFD\) là hình thoi)

Suy ra \(AF = DE\)

Mà \(AEFD\) là hình thoi

Suy ra \(AEFD\) là hình chữ nhật

Suy ra \(\widehat {{\rm{ADC}}} = 90^\circ \)

Mà \(ABCD\) là hình bình hành (gt)

Suy ra \(ABCD\) là hình chữ nhật

Vậy nếu hình bình hành \(ABCD\) là hình chữ nhật thì \(EIFK\) là hình vuông

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

15 tháng 12 2023

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)