\(|5x+10|\)+\(|6y-9|\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì: \(\begin{cases}\left|5x+1\right|\ge0\\\left|6y-8\right|\ge0\end{cases}\)\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|\ge0\)
Mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
=> \(\begin{cases}5x+1=0\\6y-8=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-\frac{1}{5}\\y=\frac{4}{3}\end{cases}\)
|5x+1|+|6x-8|\(\le\)0
Trường hợp 1:
|5x+1|+|6x-8|=0
\(\Rightarrow\)5x+1=0
x =0-1
x =-1
x =\(\frac{-1}{5}\)
\(\Rightarrow\)6y-8=0
6y =8
y =\(\frac{4}{3}\)
Trường hợp 2:|5x+1|+|6y-8|<0
sẽ k có giá trị của x hay y nào thoả mãn vì giá trị tuyệt đối lun dương
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
a)Với mọi \(x;y\in R\) ta có: \(2017\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\ge0\)
mà \(2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\le0\)
\(\Rightarrow2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
b) Với mọi \(x;y\in R\) ta có: \(\left|5x+1\right|+\left|6y-8\right|\ge0\)
mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{4}{3}\end{matrix}\right.\)
Đkxđ: \(x\ne2;x\ne3\)
Ta có \(x^2-3x+9=\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}>0\)
\(\Rightarrow\frac{x^2-3x+9}{x^2-5x+6}< 0\)khi và chỉ khi \(x^2-5x+6< 0\Leftrightarrow\left(x-2\right)\left(x-3\right)< 0\)
Vì \(x-2>x-3\Rightarrow\hept{\begin{cases}x-2>0\\x-3< 0\end{cases}\Rightarrow2< x< 3}\)
Vậy \(2< x< 3\)
\(f,\dfrac{x^2-6x+9}{x^2-8x+15}\\ =\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\\ =\dfrac{x-3}{x-5}\\ l,\dfrac{5xy+5x+3+3y}{10xy-15x-9+6y}\\ =\dfrac{5x\left(y+1\right)+3\left(y+1\right)}{5x\left(2y-3\right)+3\left(2y-3\right)}\\ =\dfrac{\left(y+1\right)\left(5x+3\right)}{\left(2y-3\right)\left(5y+3\right)}\\ =\dfrac{y+1}{2y-3}\)
\(Taco\)
\(|5x+10|,|6y-9|\ge0\)
\(Mà:|5x+10|,|6y-9|=0\Rightarrow|5x+10|=|6y-9|=0\)
\(\Rightarrow x=-2;y=1,5\)
\(\left|5x+10\right|+\left|6y-9\right|\le0\)
\(\Rightarrow\hept{\begin{cases}\left|5x+10\right|=0\\\left|6y-9\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x=-10\\6y=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-2\\y=\frac{3}{2}\end{cases}}\)