K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì OO'=OB-O'B

nên (O) tiếp xúc trong với (O') tại B

b: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

Xét tứ giác ACED có

I là trung điểm chung của AE và CD
AE vuông góc với CD

Do đo; ACED là hình thoi

c: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đo: ΔABC vuông tại C

=>AC vuông góc vơi CB

=>DE vuông góc với BC

mà EF vuông góc với BC

nên D,E,F thẳng hàng

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

a. Xét tam giác $HDE$ và $HGE$ có:
$EH$ chung

$DE=GE$ (gt)

$HD=HG$ (do $H$ là trung điểm $DG$)

$\Rightarrow \triangle HDE=\triangle HGE$ (c.c.c)

b. Từ tam giác bằng nhau phần a suy ra $\widehat{E_1}=\widehat{E_2}$

Xét tam giác $EDI$ và $EGI$ có:

$\widehat{E_1}=\widehat{E_2}$ (cmt)

$ED=EG$ (gt)

$EI$ chung

$\Rightarrow \triangle EDI=\triangle EGI$ (c.g.c)

$\Rightarrow \widehat{EGI}=\widehat{EDI}=90^0$

$\Rightarrow IG\perp GE$ (đpcm)

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Hình vẽ: