tim cac so nguyen a sao cho
(a2-1).(a2-4).(a2-7).(a2-10)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử không có 2 số nào bằng nhau. Coi \(a_1>a_2>a_3>...>a_{2016}>a_{2017}\)
Do \(a_1;a_2;...;a_{2017}\in Z_+\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2017}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1009\)( Vô lý)
Do đó có ít nhất 2 số bằng nhau.
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
VỐ SỐ SỐ NHÉ
shitbo nói thế hơi chung quá bạn,mặc dù đúng =))
Để \(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)>0\)
Có hai trường hợp:
TH1: (do a nguyên)
TH2: (bạn tự làm tiếp nhé)
Vậy ...