K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

đấy mấy thằng đứng đầu bảng xếp hạng làm đi
 

12 tháng 8 2017

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{2005.2006.2007}\)

\(B=1.2+2.3+3.4+....+2006.2007\)

Ta có : \(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2006.2007}\right)\)

\(B=1.2+2.3+3.4+....+2006.2007\)

\(=\frac{1.2.3+2.3.\left(4-1\right)+3.5.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)}{3}\)

\(=\frac{1.2.3+2.3.4-1.2.3+3.4.5-...+2006.2007.2008-2005.2006.2007}{3}\)

\(=\frac{2006.2007.2008}{3}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)x=\frac{2006.2007.2008}{3}\)

\(\Rightarrow x=\frac{2006.2007.2008}{3}:\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\right]\)(tự tính)

24 tháng 3 2016

= 1/2*(1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + ... + 1/8*9 - 1/9*10) = 1/2*(1/1*2 - 1/9*10)=1/2 * 22/45 = 11/45

24 tháng 3 2016

2A = \(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)

2A = \(\frac{1}{2}-\frac{1}{90}\)

2A = \(\frac{44}{90}\)

A = \(\frac{22}{90}\)

6 tháng 3 2019

\(D=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{10\cdot11\cdot12}\)

\(D=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{10\cdot11\cdot12}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{132}\right)=...\)

6 tháng 3 2019

\(D=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{10.11.12}\)

\(D=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{10.11.12}\right).\frac{1}{2}\)

\(D=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}-\frac{1}{11.12}\right).\frac{1}{2}\)

\(D=\left(\frac{1}{1.2}-\frac{1}{11.12}\right).\frac{1}{2}\)

\(D=\frac{65}{132}.\frac{1}{2}\)

\(D=\frac{65}{264}\)

8 tháng 11 2015

Đặt A= 1.2+2.3+...+99.100

=>3A=1.2.3+2.3.3+...+99.100.3

=>3A=1.2.3+2.3.(4-1)+...+99.100.(101-98)

=>3A=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100

=>3A=99.100.101

=>3A=999900

=>A=999900:3

=>A=333300

9 tháng 9 2023

https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-1-1-2-3-1-2-3-4-1-n-n-1-n-2--faq240420.html

`->` Mình tham khảo ở đây để làm nếu sai thì cho mik xl ạ.

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)

\(2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\\ 2A=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)}-\dfrac{1}{\left(n-1\right)\cdot n}\)

\(2A=\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)}\)

\(A=\dfrac{1}{4}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)\cdot2}\)

 

 

9 tháng 9 2023

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\right)\)

\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right]\)

\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)n}\right]\)

\(=\dfrac{1}{2}\cdot\left[\dfrac{n\left(n-1\right)}{2n\left(n-1\right)}-\dfrac{2}{2n\left(n-1\right)}\right]\)

\(=\dfrac{1}{2}\cdot\dfrac{n\left(n-1\right)-2}{2n\left(n-1\right)}\)

\(=\dfrac{n^2-n-2}{4n\left(n-1\right)}\)

#\(Toru\)

16 tháng 4 2017

2S=2/1.2.3+2/2.3.4+...+2/8.9.10

2S=1/1.2+1/2.3+1/3.4+1/4.5+....+1/8.9+1/9.10

2S=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10

2S=1-1/10

2S=9/10

S=9/10:2

S=9/10.2

S=9/20

9 tháng 10 2015

ta đặt: A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007

2.A = 2(1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/2005.2006.2007)

2.A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/2005.2006.2007
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/2005.2006- 1/2006.2007) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... +1/2005.2006 - 1/2006.2007
= 1/1.2 - 1/2006.2007

=> A = (1/1.2 - 1/2006.2007):2

       A = 1/4 - 1/1003.2007

 

Đặt B = 1/1.2 + 1/2.3+ 1/ 3.4 ..... + 1/2006.2007 

         =(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/2006-1/2007)

          =1/1-1/2+1/2-1/3+1/3-1/4+....+1/2006-1/2007
         =1/1-1/2007

        = 2006/2007

thay vào phương trình ta có phương trình trở thành:

(1/4 - 1/1003.2007).x = 2006/2007

..........

còn lại bạn tính nhé

 

 

 

7 tháng 8 2017

Ta có: 

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); ...; \(\frac{2}{2005.2006.2007}=\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2006.2007}\right)\)

\(A=\frac{1}{2}\left(\frac{1003.2007-1}{2006.2007}\right)\)

B=1.2+2.3+3.4+...+2006.2007=\(\frac{2006.2007.2008}{3}\)

Ta có: A.x=B  => x=B:A = \(\frac{2006.2007.2008}{3}:\left\{\frac{1}{2}.\frac{1003.2007-1}{2006.2007}\right\}=\frac{2006.2007.2008}{3}.\frac{2.2006.2007}{1003.2007-1}\)

=> \(x=\frac{2.2006^2.2007^2.2008}{6039060}=2676.2007^2\)