Giải phương trình: \(x^6-7x^3-8=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\orbr{\begin{cases}x^3=-1\\x^3=8\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
\(y^2-7y-8=0\Rightarrow\orbr{\begin{cases}y=-1\\y=8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\sqrt[3]{-1}=-1\\x=\sqrt[3]{8}=2\end{cases}}\)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-x^2+x^2-x-6x+6=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x+3x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x-2\right)+3\left(x-2\right)\right]\left(x-1\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Rightarrow x=\left\{-3;1;2\right\}\)
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
Ta có:
2(a − 1)x − a(x − 1) = 2a + 3
⇔(a − 2)x = a + 3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
\(x^6-7x^3-8=0\)
\(x^6+x^3-8x^3-8=0\)
\(x^3\left(x^3+1\right)-8\left(x^3+1\right)=0\)
\(\left(x^3+1\right)\left(x^3-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^3+1=0\\x^3-8=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy........
\(x^6-7x^3-8=0\)
\(\Rightarrow x^6+x^3-8x^3-8=0\)
\(\Rightarrow x^3\left(x^3+1\right)-8\left(x^3+1\right)=0\)
\(\Rightarrow\left(x^3+1\right)\left(x^3-8\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2-x+1=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\)
Mà ta có:
\(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(x^2+2x+4=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3\)
=> \(x^2-x+1\) và \(x^2+2x+4\) đều vô nghiệm
=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)