Tìm x biết: \(x^4+2x^3-4x^2-5x-6=0\)
GIÚP MÌNH VỚI MAI MÌNH HỌC RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Ta có : x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2(x + 1) + x(x + 1)
= (x2 + x)(x + 1)
= x(x + 1)2
Bài : 2 :
a) Ta có : \(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\Rightarrow\frac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
=> x = 0
x - 2 = 0
x + 2 = 0
=> x = 0
x = 2
x = -2
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
Ngoài cửa chợt có tiếng gõ cửa mạnh vang dội vào trong nhà, Huy đang ngủ say liền giật mình tỉnh dậy. Đầu anh đau như búa bổ, hai mắt anh khẽ nheo lại để cố sức chặn đứng những tia sáng của ngày sớm.
Huy loạng choạng đứng dậy đi về phía cửa, kéo thanh chốt cài cửa xuống rồi dụi mắt nhìn quanh xem có ai không.
Dưới tiết trời sáng và âm u, gió lạnh hơi hiu hiu thổi qua, Huy tự nhẩm cái thời tiết này mà cũng có người mò qua đây làm gì không biết. Anh không biết là liệu có phải có con ma nào nó trêu mình vào giờ này hay không? Vì rõ là trời còn sớm mà, ngẩng lên nhìn đồng hồ thì mới chỉ có năm giờ sáng mà thôi. Giờ này người ta có dậy sớm thì cũng đi làm đồng chứ qua nhà Huy để làm cái gì?
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
Sử dụng phương pháp phân tích thành nhân tử
( có thể nhẩm nghiệm =casio rồi tách)
mk làm VD 1 cái
mấy cái còn lại tương tự
\(x^2-3x+2=x^2-x-2x+2=0\)
\(x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)=0\)
=> x=1 hoặc x=2
- Kudo -
a) x2 - 3x + 2 = 0
<=> (x - 2)(x - 1) = 0
<=> x - 2 = 0 hoặc x - 1 = 0
<=> x = 2 hoặc x = 1
b) x2 + 5x + 6 =0
<=> (x + 2)(x + 3) = 0
<=> x + 2 = 0 hoặc x + 3 = 0
<=> x = -2 hoặc x = -3
c) x2 - 4x + 3 = 0
<=> (x - 1)(x - 3) = 0
<=> x - 1 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = 3
d) x2 + 2x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> x - 1 = 0 hoặc x + 3 = 0
<=> x = 1 hoặc x = -3
e) x2 - 2x = 0
<=> x(x - 2) = 0
<=> x = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = 2
Bài giải còn nhiều thiếu sót.Mong bạn thông cảm.
\(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{x^4+2x^3-4x^2-5x-6}{x+3}\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)\left(\frac{x^3-x^2-x-2}{x-2}\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\) hoặc \(x^2+x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\) hoặc \(x^2+x+1=0\)
Ta sẽ c/m \(x^2+x+1=0\) vô nghiệm.Thật vậy:
\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Mà \(\frac{3}{4}>0\Rightarrow x^2+x+1>0\Rightarrow\)vô nghiệm.
Vậy x = {-3;2}
\(\left(x^4+x^3-6x^2\right)+\left(x^3+x^2-6x\right)+\left(x^2+x-6\right)=0\)
\(\Leftrightarrow x^2\left(x^2+x-6\right)+x\left(x^2+x-6\right)+\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)