Phân tích các đa thức sau thành nhân tử: e, a2+2ab+b2-ac-bc
l,81x2+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[a^2+b^2+2-2\left(ab-1\right)\right]\left[a^2+b^2+2+2\left(ab-1\right)\right]\\ =\left(a^2+b^2-2ab+4\right)\left(a^2+b^2+2ab\right)\\ =\left(a+b\right)^2\left(a^2+b^2-2ab+4\right)\)
a) x4 - y4
= ( x2 - y2 ) ( x2 + y2 )
= ( x - y ) ( x + y ( x2 + y2 )
b) ( a - b ) 3 - ( a - b ) 3
= ( a - b ) 2 ( a - b - a + b )
c) ( a2 + 2ab + b2 ) + ( a + b )3
= ( a + b )2 + ( a +b ) 3
= ( a + b ) 2 ( a + b + 1 )
(a+b)3+(a-b)3=(a3+3a2b+3ab2+b3)+(a3-3a2b+3ab2-b3)
=a6+6a2b4
\(abc-\left(ab+bc+ac\right)+\left(a+b+c\right)-1=\left(abc-ab\right)-\left(bc-b\right)-\left(ac-a\right)+\left(c-1\right)=ab\left(c-1\right)-b\left(c-1\right)-a\left(c-1\right)+\left(c-1\right)=\left(c-1\right)\left(ab-b-a+1\right)=\left(c-1\right)\left[b\left(a-1\right)-\left(a-1\right)\right]=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
b) \(a^6-b^3\)
\(=\left(a^2\right)^3-b^3\)
\(=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c) \(x^4-1\)
\(=\left(x^2\right)^2-1^2\)
\(=\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
2: \(8xy-24xy+16x\)
\(=8x\cdot y-8x\cdot3y+8x\cdot2\)
\(=8x\left(y-3y+2\right)=8x\left(-2y+2\right)\)
\(=-16y\left(y-1\right)\)
3: \(xy-x=x\cdot y-x\cdot1=x\left(y-1\right)\)
11: \(2mx-4m2xy+6mx\)
\(=2mx-2my\cdot4y+2mx\cdot3\)
\(=2mx\left(1-4y+3\right)\)
\(=2mx\left(4-4y\right)=8mx\left(1-y\right)\)
12: \(7x^2y^5-14x^3y^4-21y^3\)
\(=7y^3\cdot x^2y^2-7y^3\cdot2x^3y-7y^3\cdot3\)
\(=7y^3\left(x^2y^2-2x^3y-3\right)\)
13: \(2\left(x-y\right)-a\left(x-y\right)\)
\(=2\cdot\left(x-y\right)-a\cdot\left(x-y\right)\)
\(=\left(x-y\right)\left(2-a\right)\)
\(3x^2+x-4=3x^2-3x+4x-4=3x\left(x-1\right)+4\left(x-1\right)=\left(3x+4\right)\left(x-1\right)\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(\left(a-b\right)^3-\left(a-b\right)^3\)
\(=\left(a-b\right)^2\left(a-b-a+b\right)\)
\(\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a+b\right)^2+\left(a+b\right)^3\)
\(=\left(a+b\right)^2\left(a+b+1\right)\)
......giải ....
a. \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
b ...ko cần làm .. =0
c.. =(a+b)^2 +(a+b)^3=(a+b)[ (a+b)+ (a+b)^2 ]
... check mk đó .. The end•••
\(4\left(x+3y-4\right)^2-x^2+6x-9\)
\(=\left[2\left(x+3y-4\right)\right]^2-\left(x^2-6x+9\right)\)
\(=\left[2x+6y-8\right]^2-\left(x-3\right)^2\)
\(=\left(2x+6y-8+x-3\right)\left(2x+6y-8-x+3\right)\)
\(=\left(3x+6y-11\right)\left(x+6y-5\right)\)
a, \(a^{2^{ }}+2ab+b^2\)-ac-bc
= (a2+2ab+b2)- ( ac+bc)
= (a+b)2- c(a+b) = (a+b)(a+b-c).
b, 81x2+4= (9x)2 + 22
= (9x)2 + 2.9x.2 +22 - 36x
= (9x + 2)2- 36x=( 9x + 2 - 6\(\sqrt{x}\)).(9x + 2 + 6\(\sqrt{x}\))