K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

\(A=\left\{x\in N|x⋮3;2< x< 22\right\}\)

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

1)

\(a^2\left(a+1\right)+2a(a+1)\)

\(=a\left(a+1\right)\left(a+2\right)\)

mà a; a+1 ; a+2 là 3 số nguyên liên tiếp luôn \(⋮6\)

=>  đpcm

28 tháng 9 2019

\(A=a^3+b^3+3ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=1^2=1\)

\(B=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)

\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)

\(=4a^2-4ab+4b^2-6a^2-6b^2\)

\(=-2a^2-4ab-2b^2\)

\(=-2\left(a^2+2ab+b^2\right)\)

\(=-2\left(a+b\right)^2=-2.1^2=-2\)

2 tháng 4 2016

\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)

\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)

\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)

\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)

Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi

\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)

Vậy, \(a=-1;\text{ }b=1.\)

2 tháng 4 2016

f(x) chia hết cho g(x)

Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)

=> f( \(1-\sqrt{6}\)) =0

=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)

Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?

5 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

16 tháng 4 2016

n=927

k nha

10 tháng 9 2016

a) \(\left|x-5\right|-x=3\Leftrightarrow\left|x-5\right|=3+x\)

+)TH1: x>=5 thì pt trở thành

x-5=3+x <=> 0x=8 (vô nghiệm)

+)Th2: x<5 thì pt trở thành:

5-x=3+x <=> 2x=2 <=> x=1 (tm)

Vậy x=1

b)\(\left|x\right|+\frac{-1}{4}=\frac{-3}{12}\)

\(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)

c)\(-\left|x\right|+\frac{2}{3}=0\)

\(\Leftrightarrow\left|x\right|=\frac{2}{3}\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-\frac{2}{3}\end{array}\right.\)

d) \(\left|x-3\right|=3\)

+)TH1: x>=3 thì pt trở thành

x-3=3 <=>x=6(tm)

+)TH2: x<3 thì pt trở thành

x-3=-3 <=> x=0(tm)

Vậy x={0;6}

10 tháng 9 2016

j vậy???? đây là sinh học mà

20 tháng 6 2019

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)