\(\text{Cho A = }\left\{3;6;9;12;15;18;21\right\}\)
\(\text{Hãy viết dưới dạng chỉ ra tính chất đặc trưng}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(a^2\left(a+1\right)+2a(a+1)\)
\(=a\left(a+1\right)\left(a+2\right)\)
mà a; a+1 ; a+2 là 3 số nguyên liên tiếp luôn \(⋮6\)
=> đpcm
\(A=a^3+b^3+3ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2=1^2=1\)
\(B=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(=4a^2-4ab+4b^2-6a^2-6b^2\)
\(=-2a^2-4ab-2b^2\)
\(=-2\left(a^2+2ab+b^2\right)\)
\(=-2\left(a+b\right)^2=-2.1^2=-2\)
\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)
\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)
\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)
\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)
Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi
\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)
Vậy, \(a=-1;\text{ }b=1.\)
f(x) chia hết cho g(x)
Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)
=> f( \(1-\sqrt{6}\)) =0
=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)
Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
a) \(\left|x-5\right|-x=3\Leftrightarrow\left|x-5\right|=3+x\)
+)TH1: x>=5 thì pt trở thành
x-5=3+x <=> 0x=8 (vô nghiệm)
+)Th2: x<5 thì pt trở thành:
5-x=3+x <=> 2x=2 <=> x=1 (tm)
Vậy x=1
b)\(\left|x\right|+\frac{-1}{4}=\frac{-3}{12}\)
\(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
c)\(-\left|x\right|+\frac{2}{3}=0\)
\(\Leftrightarrow\left|x\right|=\frac{2}{3}\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-\frac{2}{3}\end{array}\right.\)
d) \(\left|x-3\right|=3\)
+)TH1: x>=3 thì pt trở thành
x-3=3 <=>x=6(tm)
+)TH2: x<3 thì pt trở thành
x-3=-3 <=> x=0(tm)
Vậy x={0;6}
a) \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )
Từ đây ta có đpcm
Dấu "=" \(\Leftrightarrow a=b=c\)
c) \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" \(\Leftrightarrow a=b\)
\(A=\left\{x\in N|x⋮3;2< x< 22\right\}\)