K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

Hình đây nhaundefined

 

a) Ta có: ΔEMN vuông tại E(gt)

nên \(\widehat{EMN}+\widehat{ENM}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ENM}=90^0-50^0\)

hay \(\widehat{ENM}=40^0\)

Vậy: \(\widehat{ENM}=40^0\)

b) Xét ΔAME vuông tại E và ΔAMB vuông tại B có

MA chung

\(\widehat{EMA}=\widehat{BMA}\)(MA là tia phân giác của \(\widehat{EMB}\))

Do đó: ΔAME=ΔAMB(cạnh huyền-góc nhọn)

c) Ta có: ΔAME=ΔAMB(cmt)

nên AE=AB(hai cạnh tương ứng)

Ta có: ΔAME=ΔAMB(cmt)

nên ME=MB(Hai cạnh tương ứng)

Xét ΔEAC vuông tại E và ΔBAN vuông tại B có

AE=AB(cmt)

\(\widehat{EAC}=\widehat{BAN}\)(hai góc đối đỉnh)

Do đó: ΔEAC=ΔBAN(cạnh góc vuông-góc nhọn kề)

Suy ra: AC=AN(hai cạnh tương ứng)

Xét ΔACN có AC=AN(cmt)

nên ΔACN cân tại A(Định nghĩa tam giác cân)

d) 

Ta có: ΔEAC=ΔBAN(cmt)

nên EC=BN(hai cạnh tương ứng)

Ta có: ME+EC=MC(E nằm giữa M và C)

MB+BN=MN(B nằm giữa M và N)

mà ME=MB(cmt)

và EC=BN(cmt)

nên MC=MN

Ta có: MC=MN(cmt)

nên M nằm trên đường trung trực của CN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC=AN(cmt)

nên A nằm trên đường trung trực của CN(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: IN=IC(I là trung điểm của NC)

nên I nằm trên đường trung trực của CN(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra M,A,I thẳng hàng(đpcm)

3 tháng 5 2021

Giup mk vs

a) Xét tam giác ABD và tam giác EBD có

BAD=BED(=90 ĐỘ)

ABD=EBD ( BD là tia pg của ABC)

BD cạnh chug

Do đó t/giác ABD= t/ giác EBD(chgn)

b) Vì t/giác ABC vuông ở A nên

suy ra AB^2+AC^2=BC^2 ( đl PY TA GO)

          AB^2+12^2=15^2

        AB^2+144=225

        AB^2=81

         AB^2=9^2

         AB=9 cm

Mà AB=BE( t/giác ABD=t/giác EBD)

Do đó BE=9 cm

( sr bạn nhé í c mình chx nghĩ rabucminh☹)

Bài 1 : Vẽ góc xOy có số đo bằng 60 độ. Vẽ đường thẳng d1 vuông góc với đường tia Ox tại A. Trên d1 lấy B sao cho B nằm ngoài góc xOy. Qua B vẽ đường thẳng d2 vuông góc với tia Oy tại C. Hãy do góc ABC bằng bao nhiêu độ.Bài 2: Vẽ góc ABC có số đo bằng 120 độ, AB = 2cm, AC = 3cm. Vẽ đường trung trực d1 của đoạn AB. Vẽ đường trung trực d2 của đoạn thẳng AC. Hai đường thẳng d1 và d2 cắt...
Đọc tiếp

Bài 1 : Vẽ góc xOy có số đo bằng 60 độ. Vẽ đường thẳng d1 vuông góc với đường tia Ox tại A. Trên d1 lấy B sao cho B nằm ngoài góc xOy. Qua B vẽ đường thẳng d2 vuông góc với tia Oy tại C. Hãy do góc ABC bằng bao nhiêu độ.

Bài 2: Vẽ góc ABC có số đo bằng 120 độ, AB = 2cm, AC = 3cm. Vẽ đường trung trực d1 của đoạn AB. Vẽ đường trung trực d2 của đoạn thẳng AC. Hai đường thẳng d1 và d2 cắt nhau tại O

Bài 3 : Cho góc xOy = 120 độ, ờ phía ngoài của góc vẽ tia Oc và Od sao cho Od vuông góc với Ox, Oc vuông góc vói Oy. Gọi Om là tia phân giác của góc xOy , On là tia phân giác của góc xOy, On là tia phân giác của góc dOc. gọi Oy' là tia đối của tia Oy

Chứng minh:

a/ Ox là tia phân giác của góc y'Om

b/ Tia Oy' nằm giữa 2 tia Ox và Od

c/ Tính góc mOc

d/ Góc mOn = 180 độ

- Cầu mong m.n giúp mik, chỉ cần giải dc không cần đúng hay sai, gấp lắm rồi TT^TT tới chủ nhật tuần này mik mà làm không xong là ra khỏi nhà 

2
27 tháng 10 2014

moy cau nay de nhung minh khong biet ve hinh tren may tinh

2 tháng 9 2015

Vẽ hình này khó lắm nhưng nếu bạn suy nghĩ thêm 1 xíu là ra ngay thui , cố lên ^^

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)