Cho hình vẽ bên,ABCD là hình bình hành, biết BE=DF. Chứng minh rằng AE//CF A B D C F E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hình bình hành ABCD, trên BD lấy E , F sao cho BE = DF và E nằm giữa Bvà E . chứng minh AE // CF
a: Xét ΔADE vuông tại E và ΔCBF vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔADE=ΔCBF
Suy ra: AE=CF
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Ta có: AE+EB=AB
CF+FD=CD
mà AB=CD
và AE=CF
nên EB=FD
Ta có: AH+HD=AD
CG+BG=CB
mà AD=CB
và HD=BG
nên AH=CG
Xét ΔAHE và ΔCGF có
AH=CG
\(\widehat{A}=\widehat{C}\)
AE=CF
Do đó: ΔAHE=ΔCGF
Suy ra: HE=GF
Xét ΔEBG và ΔFDH có
EB=FD
\(\widehat{B}=\widehat{D}\)
BG=DH
Do đó: ΔEBG=ΔFDH
Suy ra: EG=FH
Xét tứ giác EHFG có
EG=FH
EH=FG
Do đó: EHFG là hình bình hành
a: Xét ΔAEB và ΔCFD có
AB=CD
\(\widehat{ABE}=\widehat{CDF}\)
BE=DF
Do đó: ΔAEB=ΔCFD
Suy ra: \(\widehat{AEB}=\widehat{CFD}\)
\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AE//CF
a: Ta có: AE+EB=AB
DF+FC=DC
mà AE=FC
và AB=DC
nên EB=DF
Xét tứ giác EBFD có
EB//DF
EB=DF
Do đó: EBFD là hình bình hành
Suy ra: DE=BF
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành