Tim GTNN: A = x^2 + x + 1 / ( x + 1 )^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-1\right|+2C=\left|x-1,5\right|+\left|1-x\right|\\ \Leftrightarrow\left|x-1\right|+2C=\left|x-1,5\right|+\left|x-1\right|\\ \Rightarrow2C=\left|x-1,5\right|\ge0\\ \Rightarrow C\ge0\)
Để C=0 thì
\(\left|x-1,5\right|=0\\ \Leftrightarrow x-1,5=0\\ \Leftrightarrow x=1,5\)
Vậy...
cái này sai r mk xóa nhé
Đề full ko phải vệ,có lẽ bạn đó viết quá gần
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(A=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2+y^2=20\\x^2=y^2\end{matrix}\right.\)\(\Rightarrow x=y=\pm\sqrt{10}\)
Vậy \(Min_A=\frac{1}{5}\) khi \(x=y=\pm\sqrt{10}\)
em xin lỗi chớ em mới lớp 6 thui anh Đức ạ
\(A=x^2-5x+1=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{21}{4}=\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\)
nên \(\left(x-\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Vậy \(Min_{x^2-5x+1}=-\frac{21}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).
\(B=1-x^2+3x=-\left(x^2-3x-1\right)=-\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)Vì \(\left(x-\frac{3}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{3}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)
Vậy \(Max_{1-x^2+3x}=\frac{13}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
1. Cho x,y > 0 .Tim GTNN cua A = \(\dfrac{x^2}{y^2}+\dfrac{4y^2}{x^2}-\dfrac{x}{y}-\dfrac{2y}{y}+1\)
\(A=\frac{x^2+2x+1-x-1+1}{\left(x+1\right)^2}=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{\left(x+1\right)}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)
\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)
Đặt B=\(\frac{1}{x+1}\). ta có:
\(A=B^2-B+1=B^2-\frac{2B.1}{2}+\frac{1}{4}+\frac{3}{4}=\left(B-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
dấu = xảy ra khi \(B-\frac{1}{2}=0\)
\(\Rightarrow B=\frac{1}{2}\). Vậy Min A=\(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
eei, sorry :>
\(B=\frac{1}{x+1}=\frac{1}{2}\Rightarrow x+1=2\Rightarrow x=1\)
=.=" sorry bn nha, t làm lộn