K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

ĐKXĐ: \(x\ne1\)

\(A=\frac{5x+1}{x^3-1}-\frac{1-2x}{x^2+x+1}-\frac{2}{1-x}\)

\(A=\frac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{5x+1-x+1+2x^2-2x+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^2+4x+4}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4}{x-1}\left(x^2+x+1\ne0\right)\)

16 tháng 12 2018

b, ĐỂ x nhân giá trị nguyên 

\(\Rightarrow4⋮x-1\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Nếu : x - 1 = 1 => x = 2 

  x - 1 = -1 => x = 0 

x - 1 = 2 => x = 3 

.....

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

11 tháng 3 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)

\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)

b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)

\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)

+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)

+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)

Vậy x nguyên bằng 0 thì A nguyên

c) \(\left|A\right|=A\Leftrightarrow A\ge0\)

\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)

Vậy \(x>\frac{1}{2}\)thì |A| = A

11 tháng 3 2020

a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)

Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1

Mà x nguyên => 2x-1 nguyên

=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng

2x-1-2-112
2x-1023
x-1/2013/2

Đối chiếu điều kiện

=> x=0

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

23 tháng 2 2020

a) Rút gọn :

\(ĐKXĐ:x\ne\pm5\)

Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)

\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)

\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)

Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?

15 tháng 12 2016

\(C=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{1}{1-x}+\frac{2}{x+1}+\frac{-5x}{\left(1-x\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\left(\frac{x+1+2-2x-5x}{\left(1-x\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\left(\frac{3-6x}{\left(1-x\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{3\left(1-2x\right)}{\left(1-x\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{3\left(x-1\right)}{1-x}\)

nho k nha