cho 1/a+1/b+1/c=0
và M=b^2c^2/a+c^2a^2/b+a^2b^2/c
c/m M=3abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
Chứng minh M=3abc.
Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)
Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)
\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)
Từ gt\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
\(\Sigma\frac{1}{2a^2+b}=\Sigma\frac{1}{a^2+\left(a^2+b^2\right)}\)\(\le\frac{1}{a^2+2ab}\)\(=\frac{1}{9}\Sigma\frac{9}{a^2+ab+ab}\le\frac{1}{9}\Sigma\frac{1}{a^2}+\frac{2}{ab}\)\(=\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\)
Dấu = xra khi a=b=c=1.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow ab+bc+ca=0\)
Chứng minh đẳng thức này mà áp dụng:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Khi đó
\(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
\(=\frac{\left(a^3b^3+b^3c^3+c^3a^3\right)}{abc}=\frac{3a^2b^2c^2}{abc}=3abc\) Do ab+bc+ca=0
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=> bc+ac+ab=0
ta có
\(bc+ac=-ab\)
<=> \(\left(bc+ac\right)^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)
<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)
tương tự
\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)
\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)
thay vào E ta đc
\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)
=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
<=> \(\frac{ab+bc+ca}{abc}=0\)
<=> \(ab+bc+ca=0\)
=> \(ab+bc=-ca\)
<=> \(\left(ab+bc\right)^3=-ca^3\)
Ta co: \(a^3b^3+b^3c^3+c^3a^3=a^3b^3+b^3c^3-\left(ab+bc\right)^3=a^3b^3+b^3c^3-ab^3-bc^3-3ab.bc\left(ab+bc\right)\)
\(=-3ab.bc\left(ab+bc\right)=-3ab.bc.\left(-ca\right)=3a^2b^2c^2\)
\(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{b^3c^3+c^3a^3+a^3b^3}{abc}=\frac{3a^2b^2c^2}{abc}=3abc\)