K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge x-1\\\left|3-x\right|\ge3-x\end{cases}}\)

\(\Rightarrow\left|x-1\right|+\left|3-x\right|\ge x-1+3-x=2\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=x-1\\\left|3-x\right|=3-x\end{cases}\Leftrightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}\Leftrightarrow}1\le x\le3}\)

Vậy GTNN của \(\left|x-1\right|+\left|3-x\right|=2\)\(\Leftrightarrow1\le x\le3\)

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

NV
6 tháng 1 2022

\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)

\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)

\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)

\(A_{min}=6\) khi \(x=5\)