K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\left(1-\frac{1}{x+1}\right)\left(1-\frac{1}{x+2}\right)\left(1-\frac{1}{x+3}\right)...\left(1-\frac{1}{x+2018}\right)\)

\(=\frac{x}{x+1}.\frac{x+1}{x+2}.\frac{x+2}{x+3}....\frac{x+2017}{x+2018}\)

\(=\frac{x}{x+2018}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)

=1/x-1/x+2014

\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)

a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x+1}{\left(x-1\right)^2}\)

b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)

\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)

\(=\dfrac{2\left(1-3x\right)}{3x+1}\)

c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)

4 tháng 12 2018

a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)

( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)

(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)

1/x +1/x+4

2x+4/x(x+4)

4 tháng 12 2018

Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé

\(=\dfrac{x+1-1}{x+1}\cdot\dfrac{x+2-1}{x+2}\cdot...\cdot\dfrac{x+2018-1}{x+2018}\)

\(=\dfrac{x}{x+1}\cdot\dfrac{x+1}{x+2}\cdot...\cdot\dfrac{x+2017}{x+2018}\)

\(=\dfrac{x}{x+2018}\)

18 tháng 11 2021

\(=\left(x-1\right)\left(x+1\right)\cdot\dfrac{x+1-x+1-x^2+1}{\left(x-1\right)\left(x+1\right)}\left(x\ne\pm1\right)\\ =3-x^2\)

28 tháng 12 2017

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+....+\dfrac{1}{\left(x+2017\right)\left(x+2018\right)}\\ =\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\\ =\dfrac{1}{x}-\dfrac{1}{x+2018}\\ =\dfrac{2018}{x\left(x+2018\right)}\)

28 tháng 12 2017

\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2016}-\dfrac{1}{x+2017}+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)

\(=\dfrac{1}{x}-\dfrac{1}{x+2018}\)

\(=\dfrac{2018}{x\left(x+2018\right)}\)

a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2

b: =x^3+3x^2-2x-3x^2-9x+6

=x^3-11x+6

c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)

\(=2x^2-3x-1+\dfrac{5}{2x+1}\)

1 tháng 7 2023

a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)

\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)

\(=2x^5-16x^3-2x^5-x^3\)

\(=-17x^3\)

b) \(\left(x+3\right)\left(x^2+3x-2\right)\)

\(=x^3+3x^2-2x+3x^2+9x-6\)

\(=x^3+6x^2+7x-6\)

c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)

\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)

\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)

NV
8 tháng 12 2018

\(A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2017}-\dfrac{1}{x+2018}\)

\(A=\dfrac{1}{x}-\dfrac{1}{x+2018}=\dfrac{2018}{x\left(x+2018\right)}\)

\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}-\dfrac{1}{\left(x+4\right)\left(x+6\right)}+...+\dfrac{1}{\left(x+96\right)\left(x+98\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)\)

\(B=\dfrac{1}{4}\left(\dfrac{1}{x\left(x+2\right)}-\dfrac{1}{\left(x+98\right)\left(x+100\right)}\right)=\dfrac{1}{4}\left(\dfrac{x^2+198x+9800-x^2-2x}{x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\right)\)

\(B=\dfrac{196x+9800}{4x\left(x+2\right)\left(x+98\right)\left(x+100\right)}\)

8 tháng 12 2018

mình cũng vừa kiểm tra xong , kết quả đúng rồi đó