Chứng minh phân số
\(B=\frac{2\cdot n+1}{2\cdot n^2-1}\)
là phân số tối giản với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(6n+5;3n+2) là d
Ta có:\(6n+5⋮d\)
\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)
\(\Rightarrow P\)là phân số tối giản
Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)
Để P có giá trị lớn nhất
\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất
\(\frac{1}{3n+2}\ge1\)
Dấu\("="\)xảy ra khi
\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)
\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)
\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)
Ta có : \(d\inƯC(6n+5,3n+2)\)nên :
\((6n+3)⋮d\) và \((3n+2)⋮d\)
\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)
\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản
b, Tự làm
-Ta có: \(n^4+n^2+1=\left(n^4+n^3+n^2\right)+\left(-n^3-n^2-n\right)+\left(n^2+n+1\right)=n^2\left(n^2+n+1\right)-n\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(n^2-n+1\right)\)
\(\Rightarrow\dfrac{n^2+n+1}{n^4+n^2+1}=\dfrac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\dfrac{1}{n^2-n+1}\).
-Vậy \(\dfrac{n^2+n+1}{n^4+n^2+1}\left(n\in Nsao\right)\) không là phân số tối giản.
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)
mà \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)
\(=1-\frac{1}{2008}\)<1 (2)
mà 1<3 (3)
từ (1),(2) và (3)=> đpcm
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi ƯCLN(n+1;n+2)=d(d\(\in\)N*
\(\Rightarrow\)n+1chia hết cho d;n+2 chia hết cho d
\(\Rightarrow\)n+2-(n+1)chia hết cho d
\(\Rightarrow\)n+2-n-1 chia hết cho d
\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d\(\in\)Ư(1)={1}\(\Rightarrow\)d=1
Vậy phân số \(\frac{n+1}{n+2}\)là phân số tối giản
Gọi \(d=ƯCLN\left(2n+1;2n^2-1\right);n\in N\)
Ta có:
\(2n+1\)chia hết cho \(d\Rightarrow n\left(2n+1\right)\) chia hết cho \(d\)
và \(2n^2-1\) chia hết cho \(d\)
nên \(\left(n\left(2n+1\right)-2n^2+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow n+1\)chia hết cho \(d\)
\(\Leftrightarrow2n+2\) chia hết cho \(d\)
\(\Leftrightarrow2n+2-\left(2n+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow1\)chia hết cho \(d\Rightarrow d=1\)
Vậy, phân số \(B=\frac{2n+1}{2n^2-1}\) tối giản với \(n\in N\)