Cho tam giác PQR có PQ=PR. Gọi H là trung điểm của cạnh QR
a) CM : Tam giác PQH = tam giác PRH
b) CM : PH vuông góc QR
c) Trên tia đối của tia HP lấy điểm K sao cho HK = H. CM : PR = RK
d) Gọi E và F lần lượt là trung điểm của PQ và RK. CM : 3 điểm E,H,F thẳng hàng
a) Xét tam giác PQH và tam giác PRH có :
\(PQ=PR\left(gt\right)\)
\(PH\)chung
\(QH=RH\left(gt\right)\)
\(=>\) Tam giác PQH = tam giác PRH (c-c-c)
b, Ta có tam giác PQR cân tại P và có đường trung tuyến PH
Suy ra PH là đường trung tuyến đồng thời là đường cao
\(=>PH\perp QR\)
c,Ta có : \(\hept{\begin{cases}QH=RH\\KH=PH\end{cases}}\)
\(=>\)Tứ giác PQKR là hình bình hành
\(=>\)\(RK=PQ\)
Mà theo giả thiết : \(PQ=PR\)
Suy ra : \(PR=PK\)