Rút gọn các phân thức sau
a) \(A=\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a\cdot b^2-a\cdot c^2-b^3+b\cdot c^2}\)
b) \(B=\frac{x^3+y^3+z^3-3\cdot x\cdot y\cdot z}{\left(x+y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
a. Ta có:
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)