K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

3x - 12 = 0

x = 4

25 tháng 9 2021

\(\Rightarrow3x=12\Rightarrow x=4\)

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

11 tháng 9 2017

a)  \(x^3\)\(-\)\(\frac{1}{4}x\)\(=\)\(0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=0,5^2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=+-0,5\end{cases}}\)

Vậy .............................

b)  \(\left(2x-1\right)^2\)\(-\)\(\left(x+3\right)^2\)\(=\)\(0\)

\(\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=4\end{cases}}\)\(\orbr{\begin{cases}x=\frac{-2}{3}\\x=4\end{cases}}\)

Vậy ................................

c)  \(x^2\)\(\left(x-3\right)\)\(+\)\(12\)\(-\)\(4x\)\(=\)\(0\)

\(x^2\)\(\left(x-3\right)\)\(-\)\(4\)\(\left(x-3\right)\)\(=\)\(0\)

\(\left(x^2-4\right)\left(x-3\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x-3=0\end{cases}-4=0}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x=3\end{cases}=2^2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=+-2\\x=3\end{cases}}\)

a)\(x^3-\frac{1}{4}x=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)

15 tháng 12 2017

6 tháng 10 2018

      \(x^3-3x^2-4x+12=0\)   

\(\Rightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)

Tìm được x = 3, x = 2 và x = -2

      \(x^4+x^3-4x-4=0\)

\(\Rightarrow x^3\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^3-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x^3=4\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\sqrt[3]{4}\end{cases}}}\)

Chúc bạn học tốt.

13 tháng 10 2017

13 tháng 7 2019

\(x^2+4x-12=0\)

\(\Leftrightarrow x^2+4x+4=16\)

\(\Leftrightarrow\left(x+2\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{16}\\x+2=-\sqrt{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{-6;2\right\}\)

13 tháng 7 2019

4x2 + 4x - 3 = 0

=> 4x2 -2x + 6x - 3 = 0

=> 2x(2x - 1) + 3(2x - 1) = 0

=> (2x + 1)(2x - 1) = 0

=> 2x + 1 = 0  hoặc 2x - 1 = 0

=> 2x = -1 hoặc 2x = 1

=> x = -1/2 hoặc x = 1/2

13 tháng 10 2021

c: Ta có: \(x^3+3x^2+3x-7=0\)

\(\Leftrightarrow x+1=2\)

hay x=1

b: Ta có: \(x\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

27 tháng 3 2020

cảm ơn bạn

11 tháng 4 2021

Cho bất phương trình  - 4x + 12 > 0 . Phép biến đổi nào dưới đây đúng ?

- 4x + 12 < 0 

<=> -4x < - 12 

<=> 4x > 12 

Khi x  < 0 , kết quả rút gọn của biểu thức |- 4x| - 3x + 13 là :

\(\left|-4x\right|-3x+13=-4x-3x+13=-7x+13\)

=> D