Chứng minh \(4< \sqrt{6+\sqrt{6+...+\sqrt{6}}}+\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}< 5}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TM
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
0
A4
Cho \(A=\sqrt{6+\sqrt{6...+\sqrt{6}}+\sqrt[3]{6+\sqrt[3]{6...+\sqrt[3]{6}}}}\) Chứng minh rằng 4<A<5
0
VT
0
phải bt có bao nhiêu số 6 mới giải đc chứ