Tìm giá trị nhỏ nhất của biểu thức: (x-3)2+(y-7)4-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Lời giải:
$(x-3)^2\geq 0$ với mọi $x$
$(y-7)^4\geq 0$ với mọi $y$
$\Rightarrow A=(x-3)^2+(y-7)^4-7\geq 0+0-7=-7$
Vậy $A_{\min}=-7$. Giá trị này đạt tại $x-3=y-7=0$
$\Leftrightarrow x=3; y=7$
Vì \(\left(x-3\right)^2\ge0;\left(y-7\right)^4\ge0\Rightarrow\)
\(MaxA=-7\Leftrightarrow x=3;y=7\)
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)
TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)
Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
\(B=1-\frac{4}{2}\left|3-x\right|+7\\ B=8-2\left|3-x\right|\)
Mà \(\left|3-x\right|\ge0\)
=> GTNN của\(\left|3-x\right|=0\)
=> GTNN của \(2\left|3-x\right|=0\)
=> GTNN của \(B=8-0=8\)
*)Kết luận: GTNN của \(B=8\)
\(B=1-\frac{4}{2}\left|3-x\right|+7=8-2\left|3-x\right|\ge8\)
Dấu ''='' xảy ra khi \(-2\left|3-x\right|=0\Leftrightarrow x=3\)
Vậy GTNN B là 8 khi x = 3