K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Câu a sao lại là t giác ECM hả bn

9 tháng 12 2018

DCM mk lộn sorry bạn giúp mk đi

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

16 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Ta có: AB//CD

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AB=CD

AC chung

Do đó: ΔABC=ΔCDA

c: Ta có: ΔABC=ΔCDA

=>BC=DA

Xét ΔMCA và ΔMBD có

MC=MB

\(\widehat{CMA}=\widehat{BMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMCA=ΔMBD

=>\(\widehat{MCA}=\widehat{MBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Ta có: AC//BD

AC\(\perp\)CD

Do đó: DC\(\perp\)DB

=>ΔDBC vuông tại D

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................

7 tháng 4 2020

              Giải

a) Xét ΔBMC và ΔDMA có:

BM = DM (gt)

BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)

MC = MA (suy từ gt)

=> ΔBMC = ΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔBMC = ΔDMA (câu a)

nên \(\widehat{BCA}=\widehat{CAD}\)\(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔDCA và ΔBAC có:

CA chung

\(\widehat{CAD}\)\(\widehat{ACB}\)(cm trên)

DA = BC (cm trên)

=> ΔDCA = ΔBAC (c.g.c)

=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)

Do đó CD  AC

 c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM

Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:

AM = CM (gt)

NM = BM (cmt)

=> ΔABM=ΔCNM(ch−1cgv) (đpcm)

# mui #

25 tháng 11 2023

loading... a) Xét ∆ABM và ∆CDM có:

AM = CM (gt)

AMB = CMD (đối đỉnh)

BM = DM (gt)

⇒ ∆ABM = ∆CDM (c-g-c)

b) Do ∆ABM = ∆CDM (cmt)

⇒ MAB = MCD (hai góc tương ứng)

⇒ MCD = 90⁰

⇒ MC ⊥ CD

⇒ AC ⊥ CD