Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm mẫu cho 1 câu nha !
a, ĐKXĐ : x khác -3 ; -1 ; 2
Biểu thức = 2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0
=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến
k mk nha
Lời giải:
a) Xét tử thức:
\((x^2+y)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)=x^2y+\frac{x^2}{4}+y^2+\frac{y}{4}+x^2y^2+\frac{3}{4}y+\frac{1}{4}\)
\(=x^2y+\frac{x^2}{4}+y+y^2+x^2y^2+\frac{1}{4}\)
\(=(x^2y+\frac{x^2}{4}+x^2y^2)+(y^2+y+\frac{1}{4})=x^2(y^2+y+\frac{1}{4})+(y^2+y+\frac{1}{4})\)
\(=(x^2+1)(y+\frac{1}{2})^2\)
Xét mẫu thức:
\(x^2y^2+1+(x^2-y)(1-y)=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=(x^2y^2-x^2y+x^2)+(y^2-y+1)=x^2(y^2-y+1)+(y^2-y+1)\)
\(=(y^2-y+1)(x^2+1)\)
Do đó:
\(A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\) là giá trị không phụ thuộc vào $x$
b)
\((y+\frac{1}{2})^2\geq 0, \forall y\in\mathbb{R}\)
\(y^2-y+1=(y-\frac{1}{2})^2+\frac{3}{4}>0, \forall y\in\mathbb{R}\)
Do đó: $A=\frac{(y+\frac{1}{2})^2}{y^2-y+1}\geq 0$
Hay $A_{\min}=0$ tại $y=\frac{-1}{2}$
a)...........................
b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)
\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)
\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)
\(\Rightarrowđpcm\)
c) Bạn tự làm đi tới đây dễ rồi
a.\(P=x^2-y^2+x^3+y^3-x^3y^2-x^2y^3\) phần (x+y)(1-y)(1+x)
\(\Leftrightarrow P=\frac{\left(x+y\right)\left(x-y+x^2-xy+y^2-x^2y^2\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(\Leftrightarrow P=\frac{x-y+x^2-xy+y^2-x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
b/Dễ r
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)