Tìm x, biết:
|5x - 3| - 2x = 7
Giúp cho mk với mọi ng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A(x)=-2x^2+5x+7=0`
`=> -(2x^2-5x+7)=0`
`=> -(2x^2-2x-7x+7)=0`
`=> -[(2x^2-2x)-(7x-7)]=0`
`=> -[2x(x-1)-7(x-1)]=0`
`=> -[(2x-7)(x-1)]=0`
`=> -(2x-7)(x-1)=0`
`=> (2x-7)(x+1)=0`
`=>`\(\left[{}\begin{matrix}2x-7=0\\x+1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=7\\x=-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={7/2; -1}.`
a) |x + 25| + |-y + 5| =0
=> |x + 25| = 0 hoặc |-y + 5| = 0
Từ đó bạn cứ bỏ giá trị tuyệt đối rồi tính nha! Mấy bài khác cũng vậy
\(a,2x+1\ge-7\)
\(\Leftrightarrow2x\ge-8\)
\(\Leftrightarrow x\ge-4\)
\(b,3\left(2x-1\right)< 5x-7\)
\(\Leftrightarrow6x-3-5x+7< 0\)
\(\Leftrightarrow x-4< 0\)
\(\Leftrightarrow x< -4\)
a: \(\Rightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
=>-4x=5
hay x=-5/4
b: \(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
=>42x=41
hay x=41/42
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+6y-1}{5x}\left(1\right)\)
Từ `2` tỉ số đầu , ta áp dụng t/c của DTSBN , ta đc :
\(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=\dfrac{2x+3+3y-2}{3+6}=\dfrac{2x+3y+1}{9}\left(2\right)\)
Từ `(1);(2)=>`\(\dfrac{2x+6y-1}{5x}=\dfrac{2x+3y+1}{9}\left(3\right)\)
Từ `(3)` ta xét `2` trường hợp :
+, Nếu `2x+3y+1 \ne 0` thì :
`(3)=>5x=9=>x=9/5`
Thay `x=9/5` vào \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}\), ta đc :
\(\dfrac{2\cdot\dfrac{9}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{\dfrac{18}{5}+3}{3}=\dfrac{3y-2}{6}\\ \Rightarrow\dfrac{11}{5}=\dfrac{3y-2}{6}\\ 3y-2=6\cdot\dfrac{11}{5}\\ 3y-2=\dfrac{66}{5}\\ 3y=\dfrac{76}{5}\\ y=\dfrac{76}{16}\)
+, Nếu `2x+3y+1=0` thì :
`(1)=>` \(\dfrac{2x+3}{3}=\dfrac{3y-2}{6}=0\\ \Rightarrow\left\{{}\begin{matrix}2x+3=0\\3y-2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
Pt tương đương:
\(2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Leftrightarrow5x=-3\)
\(\Leftrightarrow x=-\frac{3}{5}\)
Vậy pt có nghiệm là :\(x=-\frac{3}{5}\)
a ) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(\Leftrightarrow20x^2+8x-\left(20x^2-6x+70x-21\right)=133\)
\(\Leftrightarrow20x^2+8x-20x^2+6x-70x+21=133\)
\(\Leftrightarrow-56x+21=133\)
\(\Leftrightarrow-56x=112\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Leftrightarrow\left(18x-15\right)\left(4x+1\right)-\left(72x^2+27x-16x-6\right)=203\)
\(\Leftrightarrow72x^2-60x+18x-15-72x^2-27x+16x+6=203\)
\(\Leftrightarrow\left(72x^2-72x^2\right)+\left(18x+16x-60x-27x\right)-\left(15-6\right)=203\)
\(\Leftrightarrow-53x-9=203\)
\(\Leftrightarrow-53x=212\)
\(\Leftrightarrow x=-4\)
Vậy \(x=-4\)
\(\Rightarrow\left|5x-3\right|=2x+7\\ \Rightarrow\left[{}\begin{matrix}5x-3=2x+7\\5x-3=-2x-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-\dfrac{4}{7}\end{matrix}\right.\)
TỰ LÀM ĐI