cho \(\frac{a}{a'}\)= \(\frac{b}{b'}\)=\(\frac{c}{c'}\)=-4 và a' - 3b' + 2c' \(\ne\) 0 giá trị của biểu thức \(\frac{-a+3b-2c}{a'-3b'+2c'}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\) mà\(\frac{a}{a'}=4\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4=\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\)
=>\(\frac{a-3b+2c}{a'-3b+2c'}=4\)
Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được:
\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)
Vậy \(P=9\)
+) Ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{a}{a'}=\frac{3b}{3n'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}=4\)
=> P=4
+)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
=> Q=4