K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\) mà\(\frac{a}{a'}=4\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}\)

30 tháng 10 2016

thank you!

12 tháng 8 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)

12 tháng 8 2016

Bạn tl sai r. lại r mk k cho

17 tháng 10 2015

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4=\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\)

=>\(\frac{a-3b+2c}{a'-3b+2c'}=4\)

14 tháng 8 2016

Hỏi đáp Toán

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)

2 tháng 8 2016

+) Ta có

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\Rightarrow\frac{a}{a'}=\frac{3b}{3n'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}=4\)

=> P=4

+)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)

=> Q=4